Чтение онлайн

на главную

Жанры

Эволюция. Классические идеи в свете новых открытий
Шрифт:

Параллельно и независимо сформировалось цветное зрение у некоторых обезьян Нового Света. Им повезло меньше: столь необходимой дупликации они не дождались. Недостающий третий опсин возник у американских обезьян как аллельный вариант одного из двух старых опсиновых генов. Поэтому трихроматическим зрением обладают лишь особи, гетерозиготные по данному гену, а гомозиготы обходятся дихроматическим. Ситуация усложняется тем, что находится этот ген в Х-хромосоме, которая у самок имеется в двух экземплярах, а у самцов — только в одном. Поэтому шанс получить от родителей три разных опсина (и трихроматическое зрение) есть только у самок, и то не у всех. Но обезьяны ведут общественный образ жизни, и наличие в группе хотя бы одной самки, способной отличить красное от зеленого, оказывается полезным для коллектива.

Как показал Такуси Кисида из Киотского университета, обоняние наземных позвоночных имеет не менее увлекательную эволюционную историю, чем зрение. Уменьшение числа опсинов, оказывается, сопровождалось увеличением числа обонятельных рецепторов, и наоборот (Kishida, 2008).

Млекопитающие отличаются от других тетрапод не только проблемами с цветным зрением, но и гораздо более тонким обонянием. Например, у крысы насчитывается до 1600 генов обонятельных рецепторов, тогда как у курицы их всего около 80. В отличие от цветов спектра для различения многочисленных запахов тремя-четырьмя генами не обойтись: для разных летучих молекул нужны разные рецепторы. Многочисленные гены обонятельных рецепторов млекопитающих возникли в результате множественных дупликаций из исходного небольшого набора, унаследованного от предков. Естественно предположить, что развитие обоняния у млекопитающих, как и утрата цветного зрения, было связано с переходом к ночному образу жизни. В этом случае большинство дупликаций обонятельных генов должно было произойти примерно в то же время, что и утрата двух опсиновых генов.

Чтобы проверить эту гипотезу, Кисида сравнил гены обонятельных рецепторов в геномах шести тетрапод: лягушки, курицы, утконоса, опоссума, собаки и мыши. Анализ этих шести видов позволяет реконструировать ситуацию в главных точках ветвления эволюционного дерева наземных позвоночных. Сравнение лягушки с другими видами проливает свет на общего предка современных амфибий и амниот (= рептилии + птицы + млекопитающие), жившего около 340 млн лет назад (начало каменноугольного периода). Курица, как представитель архозавров, помогает составить представление об общем предке синапсидных и диапсидных тетрапод, жившем около 310 млн лет назад (вторая половина каменноугольного периода). Утконос расскажет об общем предке млекопитающих (180 млн лет назад, ранняя юра), опоссум — об общем предке сумчатых и плацентарных (140 млн лет назад, ранний мел). Эволюционные пути предков собаки и мыши разошлись около 85 млн лет назад (поздний мел). Что касается нас с вами, то мы на этом упрощенном эволюционном дереве ближе всего к мыши.

Результаты, полученные Кисидой, говорят о том, что у общего предка амфибий и амниот было 100–110 генов обонятельных рецепторов. У общего предка синапсидных и диапсидных их число осталось прежним. Зато у общего предка однопроходных и териевых их было уже 330, у общего предка плацентарных и сумчатых — 670, а общий предок мышей и собак имел 740 генов обонятельных рецепторов. Главный результат состоит в том, что почти все дупликации обонятельных генов были приурочены к отрезку эволюционного дерева, заключенному между общими предками диапсидных и синапсидных (310 млн лет назад) и плацентарных и сумчатых (140 млн лет назад).

Таким образом, период массовых дупликаций обонятельных генов совпадает с периодом утраты опсиновых генов. Первый опсиновый ген был потерян на отрезке между общим предком диапсидных и синапсидных и общим предком однопроходных и териевых, т. е. на ранних этапах становления млекопитающих. Второй опсиновый ген был потерян на отрезке между общим предком однопроходных и териевых и общим предком сумчатых и плацентарных.

Любопытно, что восстановление цветного зрения у обезьян Старого Света сопровождалось утратой многих обонятельных генов (или превращением их в неработающие псевдогены). Как видим, развитие зрения и обоняния происходило в противофазе. Когда древние млекопитающие перешли к ночному образу жизни, роль зрения уменьшилась, а обоняния — возросла. Когда обезьяны снова стали полагаться в основном на зрение, их обоняние ослабло.

Еще одна любопытная деталь состоит в том, что одно из семейств обонятельных генов (известное как семейство № 7; у приматов это самое многочисленное семейство обонятельных генов) подвергалось усиленной дупликации уже после разделения плацентарных и сумчатых. О некоторых рецепторах этого семейства известно, что они реагируют на половые феромоны. Есть вещи в мире запахов, которые никаким зрением не заменишь.

У читателей может возникнуть резонный вопрос: неужели для улучшения зрения или обоняния достаточно добавить новый рецептор? А откуда возьмутся новые мозговые структуры, которые будут обрабатывать сигналы от нового рецептора? Так вот, похоже на то, что новых мозговых структур для этого не требуется, потому что имеющиеся структуры используют для интерпретации сигналов самообучающиеся алгоритмы. В процессе развития мозг автоматически обучается различать сигналы, приходящие от разных рецепторов, и интерпретировать их именно как разные сигналы. Ничего не меняя в структуре мозга, можно добавить в сетчатку новый опсин, и мозг сам разберется, что делать с новым типом сигналов. На это указывают результаты опытов с трансгенными мышами, которым пересадили ген третьего, человеческого опсина (ничего не меняя в мозгу). Судя по результатам тестов, такие мыши лучше отличают красный цвет от зеленого, чем их дикие сородичи (Jacobs et al., 2007).

Новые белки из старого конструктора

Большинство белковых молекул состоит из нескольких функциональных блоков (доменов). Например, белки, участвующие в передаче сигналов, часто содержат домены двух типов — регуляторные и каталитические. Первые реагируют на поступающие сигналы и определяют условия, при которых белок-передатчик «сработает». Вторые передают сигнал следующему участнику каскада (например, присоединяют фосфатную группу к другому белку, переводя его в активное состояние). Каждый такой белок действует как оператор условного перехода «если… то», причем регуляторный домен отвечает за «если», а каталитический — за «то».

Ученые давно предполагали, что перетасовка фрагментов белковых молекул может быть важным источником эволюционных новшеств (Ратнер, 1993). На это указывают данные сравнительной генетики, а недавно начали появляться и прямые экспериментальные подтверждения. Одно из них получили биологи из Калифорнийского университета в Сан-Франциско, взявшись изучать сигнальный каскад, регулирующий половое поведение дрожжей (Peisajovich et al., 2010).

Дрожжи, как уже говорилось в главе 3, делятся на два «пола»: а и . Эксперименты проводились с полом а. Сигналом к спариванию для этих клеток служит альфа-фактор — феромон, выделяемый полом (см. рисунок). Феромон взаимодействует с рецептором Ste2, который находится на поверхности клетки а. В результате комплекс из трех белков, прикрепленный к рецептору с внутренней стороны мембраны, распадается. Освободившийся белок Ste4 взаимодействует с белком Ste5, в результате чего Ste5 с прикрепленными к нему протеинкиназами [75] Ste11, Ste7 и Fus3 транспортируется к клеточной мембране. Здесь благодаря посредничеству белка Ste50 устанавливается связь между Ste11 и Cdc42. Последний белок входит в состав комплекса из трех белков, один из которых — киназа Ste20 — активирует белок Ste11, прикрепляя к нему фосфатную группу. Ste11 в свою очередь фосфорилирует киназу Ste7, а она активирует киназу Fus3. Активированный белок Fus3 отправляется в ядро, где он активирует несколько транскрипционных факторов, которые в свою очередь включают комплекс генов, необходимых для спаривания. В клетке приостанавливаются процессы, связанные с ростом и делением, меняется морфология клетки, и кончается все тем, что клетка а сливается со своим половым партнером — клеткой .

75

Протеинкиназы — белки, регулирующие активность других белков путем присоединения к ним фосфатных групп.

Эксперименты проводились с 11 белками, которые на рисунке обозначены серыми овалами. Шесть из них состоят более чем из одного домена. Гены многодоменных белков разрезали на части, а фрагменты перекомбинировались случайным образом. В итоге были получены гены 66 новых белков. Эти гены затем поодиночке вставляли в дрожжевые клетки. При этом исходный сигнальный каскад оставляли без изменений, лишь добавляя к нему новых потенциальных участников. Все искусственные гены были соединены с одним и тем же регуляторным участком (промотором), что обеспечивало одинаковый (невысокий) уровень активности внедренных генов.

Схема сигнального каскада, запускающего программу «брачного поведения» у дрожжей. Из Peisajovich et al., 2010.

Чтобы оценить эффективность работы сигнального каскада у 66 генно-модифицированных штаммов дрожжей, в их геномы был добавлен ген зеленого флуоресцирующего белка, соединенный с промотором, который реагирует на один из транскрипционных факторов, активируемых белком Fus3. В результате по силе свечения можно было определить силу реакции сигнального каскада на добавление в среду альфа-фактора. Регистрировались два параметра: «базовая» сила свечения, которая наблюдается до добавления альфа-фактора, и скорость, с которой свечение усиливается после добавления феромона.

Популярные книги

Черный Маг Императора 7 (CИ)

Герда Александр
7. Черный маг императора
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Черный Маг Императора 7 (CИ)

Неудержимый. Книга XV

Боярский Андрей
15. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XV

На границе империй. Том 7. Часть 4

INDIGO
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
5.00
рейтинг книги
На границе империй. Том 7. Часть 4

Камень. Книга 4

Минин Станислав
4. Камень
Фантастика:
боевая фантастика
7.77
рейтинг книги
Камень. Книга 4

Болотник 3

Панченко Андрей Алексеевич
3. Болотник
Фантастика:
попаданцы
альтернативная история
6.25
рейтинг книги
Болотник 3

Имперец. Земли Итреи

Игнатов Михаил Павлович
11. Путь
Фантастика:
героическая фантастика
боевая фантастика
5.25
рейтинг книги
Имперец. Земли Итреи

Долгие дороги сказок (авторский сборник)

Сапегин Александр Павлович
Дороги сказок
Фантастика:
фэнтези
9.52
рейтинг книги
Долгие дороги сказок (авторский сборник)

Третье правило дворянина

Герда Александр
3. Истинный дворянин
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Третье правило дворянина

Меняя маски

Метельский Николай Александрович
1. Унесенный ветром
Фантастика:
боевая фантастика
попаданцы
9.22
рейтинг книги
Меняя маски

Последний Паладин. Том 2

Саваровский Роман
2. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 2

Двойной запрет для миллиардера

Тоцка Тала
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Двойной запрет для миллиардера

Приручитель женщин-монстров. Том 3

Дорничев Дмитрий
3. Покемоны? Какие покемоны?
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Приручитель женщин-монстров. Том 3

Невеста на откуп

Белецкая Наталья
2. Невеста на откуп
Фантастика:
фэнтези
5.83
рейтинг книги
Невеста на откуп

Оружейникъ

Кулаков Алексей Иванович
2. Александр Агренев
Фантастика:
альтернативная история
9.17
рейтинг книги
Оружейникъ