Чтение онлайн

на главную

Жанры

Эврика! Радость открытия. Архимед
Шрифт:

— В утверждении 21 доказывается, что каждый треугольник, построенный по такому принципу, имеет площадь, равную 1/4 от площади предыдущего треугольника. То есть получается SADB =SВЕС = 1/4Sтреугольника

— Архимед предположил, что мы можем достаточно долго заполнять пространство между треугольником и параболой построением новых треугольников на вновь образованных хордах.

— Основываясь на этой идее, он смог доказать, что площадь под параболой не может быть больше 4/3 площади изначального треугольника, но не может она быть и меньше 4/3.

— Таким образом, с помощью метода доказательства от противного выводится соотношение Sp =4/3SТ, что и требовалось

доказать.

Складывая почти до бесконечности

Самый древний пример того, что можно считать провозвестником вычисления бесконечно малых величин, мы встречаем у Зенона Элейского (490-430 до н.э.). Рассмотренная им процедура (дихотомия, последовательное деление пополам) представляла собой прецедент для работы греческих математиков в последующие века.

Архимед вплотную подошел к идее пределов в различных своих работах, где он употреблял метод исчерпывания. Одна из таких работ — «О квадратуре параболы». Речь идет о том, что складывание бесконечного числа величин дает в результате конечное число. Хотя Архимед и не мог суммировать все слагаемые, ему, несомненно, удалось достичь удовлетворительного приближения к искомой сумме интуитивным способом. Эта сумма вычисляется в утверждении 23, предпоследнем пункте трактата, как раз перед утверждением, в котором второй раз в данном тексте представлена квадратура параболы. Опираясь на этот результат, он смог доказать решение задачи о квадратуре параболы методом доказательства от противного. В сущности, утверждение 23 служит базой для решения задачи, то есть его можно рассматривать как инструмент вычисления для достижения поставленной цели. Утверждение 23 гласит:

«Если некоторые величины соотносятся друг с другом как один к четырем, то сумма всех величин и еще одна треть самой маленькой величины составит четыре трети самой большой».

Объясним это более понятным образом. Берем квадрат и делим его на четыре равные части. Складываем квадрат с его четвертью. Четверть тоже делим на четыре части и так далее до бесконечности, каждый раз прибавляя четверть к предыдущей сумме. Затем суммируются площади всех этих частей и прибавляется 1 /3 самой маленькой из них. Результат всегда будет составлять 4/3 площади изначального квадрата (см. рисунки 12 и 13 на следующей странице; на рисунке 12 представлено только одно деление, а на рисунке 13 — все деления).

Как можно увидеть, результат всегда равен А + 1/3 А, то есть сумма всех последовательных делений, проделанных указанным способом, равна 1/3 площади изначального большого квадрата. Здесь Архимед приходит интуитивным образом к следующему выражению, описывающему п делений квадрата:

В наше время такая последовательность называется геометрической прогрессией, в которой каждый следующий элемент получается путем умножения предыдущего на определенное постоянное число, называемое знаменателем прогрессии. Общая формула геометрической прогрессии такова: аn = а1 • r(n-1)

В нашем случае имеем

a1 = A

r = 1/4 -> an = 1/(4(n-1)) • А.

РИС. 12

РИС. 13

Таким образом, подставив значения n, мы получаем все слагаемые последовательности:

Можно сложить все элементы данной бесконечной последовательности, учитывая, что эта последовательность сходящаяся, с помощью формулы для суммы бесконечной убывающей геометрической последовательности:

Как видите, это значение, которое получил Архимед, не пользуясь нашими формулами. Каким-то образом он заметил, что где бы ни прервать последовательность, остаток ее будет составлять 1/3 от того слагаемого, на котором последовательность была прервана, независимо от того, что это было за слагаемое. Неизвестно, как он пришел к такому выводу. Возможно, что результата, представленного в трактате, ученый добился просто методом проб и ошибок. Главное, что он смутно предвидел принцип предела и остановился в одном шаге от него со своим методом, применяемым до сих пор для нахождения общей формулы рекуррентной последовательности.

Задача о быках

При чтении данной книги легко заметить, что выбранный стиль изложения весьма близок к научной статье, ведь ее аудитория явно интересуется математикой более, чем это можно ожидать от среднестатистического читателя. Однако «Задача о быках» выбивается из нашего стиля, поскольку изложена в виде стихов. Некоторые специалисты даже подвергали сомнению ее авторство, не только, впрочем, из-за ее поэтической формы, но и из-за самого содержания. И действительно были основания сомневаться в том, что Архимед мог решить данную задачу сам, хотя его операции с большими числами с помощью мириад проливают некоторый свет на возможные для ученого пути ее решения. Эта маленькая работа представляет собой 28 элегических дистихов, основанных на стихах Гомера. Состоящий из двух строк дистих — обычная форма для древнегреческой поэзии. Манускрипт был найден в 1773 году немецким поэтом Готхольдом Эфраимом Лессингом в герцогской библиотеке Вольфенбюттеля (Германия).

АХИЛЛЕС И ЧЕРЕПАХА

Зенон Элейский был греческим философом элейской школы и прославился своими парадоксами. Один из самых известных — это парадокс об Ахиллесе и черепахе. В нем говорится об ахейском воине Ахиллесе, столь хорошем бегуне, что его звали быстроногим. Зенон описывает довольно своеобразное состязание: соревнование между Ахиллесом и черепахой. Он предположил, что земноводное медленнее героя в два раза. Гордый Ахиллес дал черепахе фору в половину дистанции. Как говорит Зенон, когда Ахиллес достиг середины пути, черепаха уже успела проползти его четверть, то есть половину того расстояния, которое ей надо было преодолеть. Таким образом ситуация возвращается к своему началу: когда Ахиллес добегает до точки старта черепахи, она продвигается еще дальше, и так до бесконечности, следовательно выходит, что герой не догонит ее никогда. Архимед нашел ответ на этот парадокс, хотя и не сумел придать ему математическое оформление: сумма бесконечного количества слагаемых может оказаться конечным числом, то есть не бесконечностью. Говоря иначе, Зенон из Элеи не располагал таким важнейшим математическим инструментом, как исчисление бесконечно малых величин. Ахиллес догонит черепаху, потому что хотя отрезок можно делить на бесконечное число фрагментов, но, учитывая, что эти фрагменты все более мелкие, сумма их представляет конечное число. В наше время проблема обычно представляется в следующем виде:

Когда Ахиллес достигнет позиции АВ/2, где сначала находилась черепаха, она уже будет в точке АВ/4. В тот момент, когда Ахиллес добежит до позиции АВ/4, которую занимала черепаха, она будет уже в АВ/В и так далее.

Скоро потом ты увидишь Тринакрию остров;

Издавна Гелиос тучных быков и баранов пасет там на пышных,

Искусство нарезки параболоидов

Поделиться:
Популярные книги

Последний попаданец

Зубов Константин
1. Последний попаданец
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Последний попаданец

Шипучка для Сухого

Зайцева Мария
Любовные романы:
современные любовные романы
8.29
рейтинг книги
Шипучка для Сухого

Хочу тебя любить

Тодорова Елена
Любовные романы:
современные любовные романы
5.67
рейтинг книги
Хочу тебя любить

СД. Том 17

Клеванский Кирилл Сергеевич
17. Сердце дракона
Фантастика:
боевая фантастика
6.70
рейтинг книги
СД. Том 17

Я же бать, или Как найти мать

Юнина Наталья
Любовные романы:
современные любовные романы
6.44
рейтинг книги
Я же бать, или Как найти мать

Беглец

Бубела Олег Николаевич
1. Совсем не герой
Фантастика:
фэнтези
попаданцы
8.94
рейтинг книги
Беглец

Идеальный мир для Лекаря 2

Сапфир Олег
2. Лекарь
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 2

Сумеречный стрелок 7

Карелин Сергей Витальевич
7. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный стрелок 7

Александр Агренев. Трилогия

Кулаков Алексей Иванович
Александр Агренев
Фантастика:
альтернативная история
9.17
рейтинг книги
Александр Агренев. Трилогия

Жена со скидкой, или Случайный брак

Ардова Алиса
Любовные романы:
любовно-фантастические романы
8.15
рейтинг книги
Жена со скидкой, или Случайный брак

Титан империи 4

Артемов Александр Александрович
4. Титан Империи
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Титан империи 4

Воевода

Ланцов Михаил Алексеевич
5. Помещик
Фантастика:
альтернативная история
5.00
рейтинг книги
Воевода

Тринадцатый IV

NikL
4. Видящий смерть
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Тринадцатый IV

Адмирал южных морей

Каменистый Артем
4. Девятый
Фантастика:
фэнтези
8.96
рейтинг книги
Адмирал южных морей