Чтение онлайн

на главную

Жанры

Эйнштейн. Теория относительности. Пространство - это вопрос времени.

Ласерна Давид Бланко

Шрифт:

Судя по всему, речь шла о чем-то нематериальном, что пронизывало бы любую среду, было бы невидимым и в чем вплоть до этого момента никто не чувствовал бы необходимости. Исходя из самого определения, звучавшего в высшей степени эфемерно, субстанцию назвали эфиром.

Эта невидимая среда удерживала в себе заряды, которые постоянно воздействовали на нее и изменяли ее эластическую структуру самим своим присутствием и движениями. Конфигурация поля в конкретной области предопределяла участь конкретной частицы, но при этом каждая из частиц определяла участь поля, а значит, свою собственную и других частиц. Максвелл вывел точные закономерности этого непрекращающегося диалога между полями и зарядами.

Джеймс Клерк Максвелл родился в Эдинбурге в 1831 году – именно тогда Фарадей пришел

к идее силовых линий. Для многих Фарадей, сын кузнеца и крестьянки, был не более чем чудо-ремесленником. Возможно, из-за этого снобизма его теоретические рассуждения никто не принимал всерьез.

Пример скалярного поля: карта распределения температур в атмосфере (слева). Интенсивность цвета в каждой точке определяется числовым значением температуры. Пример векторного поля: распределение ветра над территорией Италии (справа).

Максвелл же отвечал всем общественным требованиям. В его родословной можно было найти представителей аристократии, а сам он учился в университетах Эдинбурга и Кембриджа. В последнем он даже вступил в элитное полутайное общество «Кембриджских апостолов». Впоследствии Максвелл преподавал естественную философию в лондонском Королевском колледже и возглавлял Кавендишскую лабораторию.

Высокое происхождение ученого не помешало ему воспринять идеи Фарадея всерьез. При помощи математически точного рейсфедера Максвелл начертил те линии поля, которые физик-самоучка почувствовал в узорах железных стружек. Прибегнув к помощи частных производных, он вывел законы, управлявшие структурой и эволюцией полей при любом возможном сочетании зарядов, токов и магнитов. Максвелл объяснил все макроскопические электромагнитные явления, объединив в одну систему открытия Ампера, Кулона, Фарадея и Эрстеда. Однако даже самые революционные манифесты пишутся на унаследованном от прошлого языке. Так и Максвелл для того, чтобы вывести уравнения, описывающие поведение электрических и магнитных полей, опирался на «леса» из механических моделей. Приведем слова английского физика Фримена Дайсона:

«Ученые той эпохи, включая Максвелла, пытались представить себе поля в виде механических структур, составленных из огромного количества круговоротов и завихрений, которые распространялись в пространстве. Предполагалось, что эти структуры изображали механическое напряжение, передающееся по электрическому или магнитному полю между зарядами и токами. Для того чтобы поля соответствовали уравнениям Максвелла, система круговоротов и завихрений должна была быть в высшей степени замысловатой».

Оставив в стороне круговороты, завихрения и прочие формальности, необходимо сказать, что уравнения Максвелла содержали удивительное пророчество. Если привести в движение заряд, появится переменное электрическое поле, которое, в свою очередь, вызывает появление переменного магнитного поля, приводящего к возникновению переменного электрического поля… Открытия Эрстеда и Фарадея связаны между собой: одно неизбежно влечет за собой другое.

Работая с уравнениями, Максвелл пришел к выводу, что распространяющееся движение подчиняется математической модели движения звука или любой другой волны. Ученый смог с точностью вычислить скорость этого движения; она соответствовала частному электромагнитной и электростатической величин заряда и примерно равнялась 300000000 м/сек.

Представьте себе, что он почувствовал, когда сформулированные им дифференциальные уравнения показали, что электромагнитные поля распространяются в форме волн и со скоростью света! Мало кому в этом мире повезло испытать подобное.

Эйнштейн об эмоциях Максвелла, вызванных открытием

Эта величина была не просто цифрой. В 1849 году француз Ипполит Физо (1819-1896) поймал луч света в ловушку зеркального лабиринта и, вооружившись тонким измерительным механизмом, установил скорость света в воздухе. Согласно его данным, она равнялась 314858000 м/сек, но соотечественник Физо, Леон Фуко (1819-1868), уточнил число: 298000000 м/сек. Обычно великие ученые делают свои заявления с большой осторожностью, но, видя совпадение подобного масштаба, Максвелл не мог промолчать: «Скорость поля так близка к скорости света, что, мне кажется, есть серьезные причины сделать вывод: сам свет (включая тепловое излучение и другие виды радиации) обладает электромагнитной природой и распространяется в электромагнитном поле в форме волн, подчиняясь законам электромагнетизма».

Это открытие пробило в научном объяснении мира брешь, сравнимую по размерам с эффектом от появления дарвиновского «Происхождения видов». Наконец все обретало смысл. Действие на расстоянии уступало место полям, в чьих пределах любое изменение распространяется с конечной скоростью в форме волн. Уравнения Максвелла стали одной из первых попыток унифицировать физическую науку: к электричеству и магнетизму, соединенным благодаря Эрстеду, теперь добавлялся и свет. Сближение было неожиданным: свет считался явлением, далеким от вопросов функционирования батарей, проводов и магнитов.

Длина и цвет

Если понимать свет как волну, то скорость его распространения в вакууме не поддается изменениям, в отличие от самой волны, которую можно растянуть или сжать. Таким образом, мы будем менять размер повторяющегося шаблона, который называется длиной волны, X.

Чем больше X при постоянной скорости распространения, тем ниже частота v, с которой повторяется шаблон. Поэтому X и v – величины обратно зависимые; их отношение выражено в формуле с = X • v, где X измеряется в единицах расстояния, a v – в обратных единицах времени. Если говорить о видимом излучении, то изменение длины волны глаз отмечает как изменение цвета. Если взять фиолетовую волну и начать ее растягивать, то получится синяя, потом зеленая, желтая, оранжевая, красная… и так пока она совсем не исчезнет. То же произойдет и при сжатии. Диапазон волн превышает возможности наших органов зрения и образует два невидимых для нас сектора – инфракрасный и ультрафиолетовый.

Прочтя работу Максвелла, немецкий физик Генрих Герц решил начать охоту на ускользающие электромагнитные волны. Герц доказал, что они действительно были светом – но невидимым: человеческое зрение не может воспринять волны этой длины.

Физики и инженеры быстро освоили уравнения Максвелла, и их практическому применению не мешала предполагаемая уравнениями сложнейшая система круговоротов и вихрей. В конце концов эта система отошла в небытие сама по себе, подобно уже не нужным лесам, разобранным по окончании строительства. Эйнштейн, со свойственным ему лаконизмом, объяснил произошедшее так:

«В течение десятилетий большинство ученых-физиков считали, что должна найтись механическая структура, которая сделала бы теорию Максвелла наглядной. Но провал всех усилий привел к тому, что новое понятие поля было признано неразлагаемым. Другими словами, ученые решили смириться с отсутствием механического основания теории полей».

Понятие поля не только отвечало на вопрос, как может одно тело оказывать воздействие на другое: оно просто было удобным и потому широко использовалось. Однако оно вызвало к жизни новую задачу: можно ли переформулировать теорию тяготения, которая до сих пор опиралась на закон мгновенного действия? И чтобы решить эту задачу, Эйнштейну пришлось изобрести теорию нового образца – общую теорию относительности.

Поделиться:
Популярные книги

Архил…? Книга 3

Кожевников Павел
3. Архил...?
Фантастика:
фэнтези
попаданцы
альтернативная история
7.00
рейтинг книги
Архил…? Книга 3

Сила рода. Том 3

Вяч Павел
2. Претендент
Фантастика:
фэнтези
боевая фантастика
6.17
рейтинг книги
Сила рода. Том 3

Прометей: владыка моря

Рави Ивар
5. Прометей
Фантастика:
фэнтези
5.97
рейтинг книги
Прометей: владыка моря

Гром над Академией. Часть 1

Машуков Тимур
2. Гром над миром
Фантастика:
фэнтези
боевая фантастика
5.25
рейтинг книги
Гром над Академией. Часть 1

Хозяйка дома на холме

Скор Элен
1. Хозяйка своей судьбы
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Хозяйка дома на холме

Газлайтер. Том 10

Володин Григорий
10. История Телепата
Фантастика:
боевая фантастика
5.00
рейтинг книги
Газлайтер. Том 10

Последний Паладин

Саваровский Роман
1. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин

Мастер 6

Чащин Валерий
6. Мастер
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер 6

Столичный доктор. Том III

Вязовский Алексей
3. Столичный доктор
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Столичный доктор. Том III

Наследник и новый Новосиб

Тарс Элиан
7. Десять Принцев Российской Империи
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Наследник и новый Новосиб

Вперед в прошлое 5

Ратманов Денис
5. Вперед в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 5

Последняя Арена 10

Греков Сергей
10. Последняя Арена
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Последняя Арена 10

Релокант

Ascold Flow
1. Релокант в другой мир
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Релокант

Совок-8

Агарев Вадим
8. Совок
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Совок-8