Эйнштейн. Теория относительности. Пространство - это вопрос времени.
Шрифт:
Кто движется, Галилей или Доминик? Уравнения Ньютона не зависят от системы отсчета – в этом и состоит принцип относительности Галилея. Механические опыты не могут дать ответ на вопрос, движемся мы с постоянной скоростью или пребываем в состоянии покоя. Классическая динамика позволяет оценить лишь относительное движение, но не абсолютное.
Второй драгоценный камень в короне Ньютона, закон всемирного тяготения, зависит от расстояния между телами – еще одна относительная величина, не зависящая от перемены координат между инерциальными системами.
Несмотря
Наука XIX века опьянела от перспектив, которые сулила электрическая революция, но вскоре почувствовала и похмелье, вызванное неудобствами в сфере теории (некоторые мы рассмотрели в предыдущей главе). Зависящие от скорости электромагнитные взаимодействия не только усложняли до сих пор простые схемы центральных и мгновенных сил и подрывали ньютоновский закон о действии и противодействии, но и угрожали авторитету принципа относительности, сформулированного Галилеем две сотни лет назад.
Законы Максвелла не были похожи на законы Ньютона: при преобразовании Галилея они изменялись. В любой инерциальной системе отсчета можно выразить силу как произведение массы на ускорение без необходимости добавлять новые понятия из-за изменившихся координат. Но уравнения Максвелла претерпевают метаморфозы, сравнимые с превращением доктора Джекила в мистера Хайда[2 «Странная история доктора Джекила и мистера Хайда» – повесть шотландского писателя Роберта Стивенсона о том, как в одном человеке уживаются две совершенно не похожие друг на друга личности. – Примеч. ред.]. В неподвижной системе отсчета они выглядят лаконично и элегантно, но при переводе с помощью формулы [2] в движущуюся систему, например корабль Доминика, появляются различные новые элементы, значительно усложняющие исходные уравнения. Эти элементы соответствуют физическим явлениям, которые никто не видел. Например, линии магнитного поля вокруг магнита в состоянии покоя непрерывны, но в движении становятся разорванными. Оказывается, что уравнения Максвелла не были слепы к постоянной скорости и позволяли обнаружить равномерное передвижение.
Любопытно, что Максвелл вывел свои элегантные формулы, основываясь на явлениях, которые происходят на поверхности Земли – и все согласятся, что эта система отсчета является движущейся. Возможно ли, что в сравнении с другими системами отсчета планета Земля имела свои преимущества? Этот вопрос ставил физиков на край геоцентрической пропасти. Неужели Библия говорит правду и небесные светила движутся вокруг нашей планеты? Действительно ли только на Земле и больше ни в какой движущейся системе отсчета уравнения Максвелла проявляют всю свою силу и простоту?
Поскольку уравнения Максвелла равно просты в обеих системах отсчета, G и Д электромагнитные эксперименты тоже не годятся для того, чтобы установить, двигается наблюдатель с постоянной скоростью или находится на причале в состоянии покоя.
Для того чтобы разрешить это противоречие, потребовалось поправить формулы преобразования Галилея, несмотря на всю их логичность. В 1904 году нидерландский ученый Хендрик Лоренц (1853-1928) предложил новый набор уравнений для перевода координат из одной системы отсчета в другую, при условии, что системы отличаются параметром постоянной скорости одной из них. Научное сообщество отметило событие, дав уравнениям имя изобретателя – так на свет появились преобразования Лоренца.
Выглядят они следующим образом:
Достаточно
Рассчитаем величину u²/с² в случае идущего человека (шагает он со скоростью примерно 5 км/час) и в случае летящей пули (предположим, ее скорость равна 1000 м/сек). Получаем 2.1 • 10-17 и 1,1 • 10-11 соответственно. Преобразования приятны глазу физика, и между переменными есть определенная симметрия. Если х' зависит от х и t, t' также зависит от них. В случае Галилея время t’ не зависело отточки пространства х'. Это преобразование вызвало у математиков ощущение дежа вю: оно напоминало уравнения вращения объектов в пространстве. Аналогия привела к тому, что был сконструирован такой пространственно-временной континуум, в котором преобразования Лоренца соответствуют вращению объектов в пространстве с четырьмя измерениями.
Отметим их большой плюс: в применении к уравнениям Максвелла преобразования Лоренца позволяют сохранить их восхитительную лаконичность. А при скорости движения намного меньшей, чем скорость света, они принимают вид преобразований Галилея. Поскольку скорости, с которыми мы обычно передвигаемся, очень малы по сравнению со скоростью света, неудивительно, что наш здравый смысл не сразу привел нас к уравнениям Лоренца и в течение нескольких веков удовлетворялся примерными расчетами Галилея. Необходимая коррекция так мала, что была обнаружена не в лабораториях, а с помощью теоретических рассуждений.
Едва физики пожали друг другу руки, радуясь находке Лоренца, как ее побочные эффекты вновь вызвали обеспокоенность. Преобразования подразумевали, что определенному моменту времени в неподвижной системе соответствовало бесконечное число значений в системе движущейся. Бесконечное в буквальном смысле: по одному на каждую точку пространства. Таким образом, два события, видимые как одновременные в двух отдельно взятых точках причала, не были одновременными для наблюдателя, находящегося в трюме корабля. Если немного поиграть с уравнениями, получится, что в том мире, который они описывают, тела при движении сжимаются, а время в движущихся системах протекает медленнее. Ученым нужны были очень веские причины, чтобы принять подобные аберрации, и они стали рьяно защищать прежние позиции. Прежде чем сдаться, наука приложила все силы для того, чтобы вписать электромагнетизм в более привычные рамки.
До появления работ Максвелла и Герца ученые полагали, что явления, существующие в форме волн, распространяются с опорой на какую-либо среду: например, звук передается по воде или воздуху. Здравый смысл (иногда опасный) подсказывал, что это универсальный принцип. Уравнения Максвелла описывали свет как волну, и по этой причине было высказано предположение о наличии среды, в которой он распространяется, то есть об эфире.
В отличие от греческих философов, физики не стали убивать время, рассуждая о свойствах эфира, а закрылись в своих лабораториях и принялись искать новую субстанцию. Однако ни один из самых тонких опытов не подтвердил существование невидимой среды, в которой путешествует планета Земля.