Эйнштейн. Теория относительности. Пространство - это вопрос времени.
Шрифт:
РИС. 13
РИС. 14
Наблюдатели считают, что скорость мяча внутри метательной машины уже равна скорости движения корабля и. После выстрела правая стена смещается, отдаляясь от мяча со скоростью u потому мяч должен пройти большую дистанцию. Поэтому несмотря на то, что наблюдатели системы G отметят
L+u•(t2– t1) где u•(t2– t1) расстояние, на которое отодвигается правая стена в то время, пока мяч находится в воздухе.
Если мы отвлечемся от существования корабля и будем заниматься только мячом, то увидим, что со скоростью v + u он за период времени t2 – t1 пролетит расстояние
(v + u)•(t2– t1).
Обе величины должны быть равны между собой:
L + u • (t2 – t1) = (v + u) • (t2 – t1).
Получим знакомое уравнение для вычисления длины трюма:
L = v•(t2– t1).
Можно сделать вывод о том, что с точки зрения наблюдателей на причале мяч должен пройти большее расстояние, поскольку стена от него отдаляется, но при этом он летит с большей скоростью, так как к его скорости прибавляется скорость корабля, поэтому оба эффекта компенсируют друг друга.
Заменим метательную машину фонарем, а мяч – лучом света (и опять мы имеем дело с электромагнитным излучением).
Единственный элемент, общий для систем G и D – величина скорости света. Все хронометры, участвующие в эксперименте, произведены на одной фабрике, но только два из них в одной и той же системе отсчета показывают одно и то же время. Для того чтобы перевести пространственные или временные координаты из одной системы в другую, необходимо прибегнуть к преобразованиям Лоренца.
Версия наблюдателей находящихся в трюме корабля
Как и в механическом эксперименте, А’ отмечает тот момент, когда световой луч выходит из фонаря, а В’ – момент, когда луч достигает противоположной стены (рисунок 15). Для них:
L’ = c-(t'2– t'1).
Версия наблюдателей на причале
С причала наблюдатели видят, как отдаляется правая стена, световой луч при этом по-прежнему движется со скоростью с (рисунок 16). Они замечают, что прежде чем достичь стены, луч преодолел не только длину трюма, но и дистанцию, пройденную кораблем в период времени между t1 и t2 (рисунок 17):
L +u-(t2– t1).
С другой стороны, если оставить корабль в стороне, за временной интервал (t2 – t1) свет проходит расстояние:
c•(t2– t1)=x2 -x1
Приравняв выражения друг к другу:
L + u • (t2– t1) = с • (t2– t1)=х2- х1
и применив формулу преобразований Лоренца, мы получаем поразительный результат:
Поскольку скорость корабля меньше скорости света (u < с), то фактор бета меньше t, а значение L меньше, чем L'. То есть для наблюдателей в системе G трюм корабля в длину меньше,
РИС. 15
РИС. 16
РИС. 17
Ниже мы показываем, как преобразования Лоренца применяются в расчете сжатия. У нас есть два математических выражения того расстояния, которое проходит свет:
L + u•(t2– t1),
с•(t2– t1)=x2 -х1.
Приравняем их:
L + u•(t2– t1 ) = c•(t2– t1 )=x2- x1 L=x2 -x1 -u-(t2– t1 ).
Уравнение можно упростить, если немного изменить обозначения:
Тогда выражение, найденное для L, сокращается до:
Поскольку теперь мы допускаем, что часы могут идти по-разному в зависимости от системы, для перевода координат системы G в систему D нам будет нужно использовать преобразования Лоренца:
Если мы введем эти выражения в формулу L, то получим:
А если учесть, что
Представим себе другую ситуацию. В ней наблюдатели из разных инерциальных систем присутствуют при одних и тех же явлениях, их задача – фиксировать интервал времени. В своей статье «К электродинамике движущихся тел» Эйнштейн прибегает к более простому примеру. Имея две системы, G и D последняя из которых двигалась относительно G с равномерной скоростью и, он разместил часы ровно в центре системы отсчета D и спросил себя: «Как быстро идут эти часы для наблюдателя из неподвижной системы отсчета?»