Эйнштейн. Теория относительности. Пространство - это вопрос времени.
Шрифт:
Мы уже видели, как преобразования Лоренца вводят новые правила игры, при которых наблюдатели при движении уже не совпадают в своем описании происходящего. Проанализируем, как постоянство скорости света влияет на одновременность двух событий.
У нас есть две системы отсчета, G (оси координат х и y) и D (оси координат х' и y'). Эти системы находятся в мире, где время течет одинаково во всех точках пространства, и потому часы наблюдателей идут с одинаковой скоростью.
Версия наблюдателей, находящихся в корабельном трюме
Два человека, назовем их А' и В' располагаются по углам трюма, смотря в направлении положительного луча оси y'. В центре находится механизм, выбрасывающий одновременно два мяча, один направо,
Третий человек, С' занимает свое место между А' и В' напротив аппарата. А', В' и С' синхронизируют свои часы, и все получают задание зарегистрировать некоторое событие, причем для каждого оно свое. Первый отметит время удара мяча о стену слева, второй – удар мяча о стену справа, а третий (С') – момент, когда машина выбросит мячи (рисунок 3). Когда машина выбрасывает мячи, С' отмечает по своим часам время t'0 (рисунок 4). Когда А' и В' видят, что мяч ударился о соответствующую стену, они отмечают время t'1 и t'2 (рисунок 5).
Оба мяча преодолевают одно и то же расстояние (L'/2) с одной и той же скоростью. Если все три наблюдателя сравнят свои замеры и разности t'2 – t'0 и t'1 – t'0, они получат одинаковый результат. Заключение: мячи достигли стен в один и тот же момент времени.
РИС.3
РИС. 4
РИС. 5
Версия наблюдателей на причале
Для того чтобы воспроизвести эксперимент, который только что был проведен в трюме, прибегнем к несколько искусственному приему, который, однако, будет полностью ясен при разборе второй, относительной, версии этого опыта. Мы расположим вдоль причала ряд наблюдателей с секундомерами, и каждый будет фиксировать момент события, происходящего точно напротив него (рисунок 6).
РИС. 6
РИС. 7
РИС. 8
Корабль движется вдоль причала со скоростью u. Пусть С – наблюдатель, находящийся напротив механизма в момент, когда тот выбрасывает мячи. Время, отмеченное им, будет t0. А и В – это наблюдатели, фиксирующие момент удара мячей о стены. Они отметят моменты времени t1 и t2 (рисунок 7).
Движение корабля нарушает симметрию между расстояниями, которые пролетает левый мяч (i) и правый мяч (d). До момента выстрела наблюдатели видят, что выстреливающая машина двигается со скоростью и направо. В определенный момент механизм выстреливает мячи в противоположные стороны, оба двигаются со скоростью u. Наблюдатели на причале видят, что мяч i двигается налево со скоростью v – и, а мяч d двигается направо со скоростью v – u. С их точки зрения мяч i летит медленнее, a d – быстрее. Для наблюдателей А' и В' они летели одинаково быстро. Повлияет ли эта разница скоростей на время, за которое каждый из мячей долетит до стены? Нет, потому что левая стена будет двигаться навстречу мячу i со скоростью v, а правая будет с той же скоростью отдаляться от мяча d (рисунок 8).
Эти эффекты компенсируют друг друга: медленно летящий мяч преодолевает более короткое расстояние, а быстрый – более длинное. В результате оба долетают
Заменим метательную машину и мячи фонарем с двумя лампочками. При включении он посылает два световых луча (электромагнитное излучение): один направо, другой налево.
РИС. 9
РИС. 10
Версия наблюдателей, находящихся в корабельном трюме
По сути, эксперимент очень похож на предыдущий, как и его результат: мы снова получаем равенство t'2 – t'0 = t'1 – t'0.
Версия наблюдателей на причале
В предыдущем случае, как мы помним, из-за движения корабля мячи двигались по-разному, но в этом случае константа скорости света не позволит возникнуть эффекту компенсации. Наблюдатели, находящиеся на причале, придут к выводу, что лучи света i и d одинаково быстры (рисунок 9). Но стены по-прежнему будут вести себя по-разному: одна будет приближаться к лучу i, а другая – отдаляться от луча d. Поэтому луч i придет к цели раньше, чем луч d (рисунок 10). События встречи луча света со стеной в системе отсчета G не одновременны!
Продолжим изучать следствия того факта, что скорость света постоянна, в рамках интересующего нас принципа относительности. Допустим, что два наблюдателя, G и D присутствуют при одних и тех же событиях, но видят их с разных точек. Мы попросим их сделать один дистанционный замер.
Два наблюдателя, А’ и В’, располагаются в углах корабельного трюма, глядя в направлении положительного луча оси у' На левой стене закреплен автоматический метатель, который выстреливает мяч со скоростью v. Физический феномен (в этом случае механический), который мы здесь рассмотрим, заключается в метании и остановке мяча, и этим методом мы воспользуемся для того, чтобы измерить трюм корабля. Его длина будет равна дистанции, которую пролетит мяч с момента выстрела до момента своей остановки о противоположную (правую) стену трюма.
РИС. 11
РИС. 12
Версия наблюдателей, находящихся в корабельном трюме
А’ и В’ считают, что находятся в состоянии покоя. А’ засекает на своем хронометре время выстрела мяча (t’1) (рисунок 11). Когда мяч ударяется о стену, В’ отмечает момент времени на своем секундомере (t'2) (рисунок 12).
Зная скорость v и время t' и t'1 в системе отсчета D можно сделать вывод о расстоянии, пройденном мячом, умножив скорость на период времени. В этом случае:
L'=v•(t'2– t'1).
Версия наблюдателей на причале
Нам снова понадобится целый ряд наблюдателей, стоящих вдоль причала, – каждый с хронометром. Пусть А – наблюдатель, который находится напротив метательной машины в момент выстрела. Он отметит на своем хронометре момент вылета мяча из машины (t1) (рисунок 13). В – тот, кто будет находиться напротив мяча, когда тот ударится о стену. В момент удара он отметит время t2 (рисунок 14).