Эйнштейн
Шрифт:
Эйнштейн убежден: он должен просветить мир о природе световых явлений. Свет — первоисточник, альфа и омега. По нему будут судить о возрасте планет. Определят дату рождения Вселенной. Разработают теорию Большого взрыва. Пока же здесь царит бестолковщина.
У Эйнштейна была и другая причина заняться проблемой световых явлений. Он предчувствовал: разрешив этот вопрос, он сможет сделать свою специальную теорию относительности общей, создать свою теорию гравитации. Чтобы низвергнуть Ньютона, надо доказать способность света подпадать под воздействие гравитации. Посвящение Эйнштейна: пролить свет на исходные истины, сказать правду о свете.
В статье «Об одной эвристической точке зрения на возникновение и превращение света» будет
Эйнштейн сделал постулатом неизменность скорости света — ту самую скорость света, впервые измеренную в 1676 году в Парижской обсерватории. Однако неизменность противоречила его теории относительности. Теория ложна или скорость света способна меняться?
Он сделал выбор в пользу неизменности скорости, даже если это не согласуется с его теорией относительности. Возвел парадокс в ранг аксиомы, исключение сделал правилом. Ничто не должно быть неизменным, абсолютным… за исключением скорости света!
Еще одна революция в умах. Эйнштейн вообразил, как до него сделал Планк, что свет не состоит из частиц. Свет — нечто вроде волны. Это волна, и более чем волна. Он опирался на труды астрономов, которые за годы до него изучали свечение двойных звезд. Это звезды с равными массами, находящиеся в постоянной ротации, и одна ближе к Земле, чем другая. Анализ их светового излучения доказывает, что время, за которое свет ближайшей звезды доходит до Земли, точно такое же, как и у более далекой. Эйнштейн первым пришел к выводу: распространение света не зависит от его источника.И продолжил рассуждение. Поставил мысленный опыт, попытавшись угнаться за лучом света. И заключил из этого опыта, что скорость света — самая большая, какую только удается развить.
Что делать с призрачным эфиром? Если бы эфир существовал, это «материальное тело», согласно законам Ньютона, прилагало бы дополнительные силу и скорость. Благодаря чему эта скорость превысила бы с.А это входит в противоречие с его постулатом, а потому невозможно. Прощай, эфир… А если свет не распространяется в эфире и распространяется с постоянной скоростью, значит, он распространяется в вакууме. В статье «К электродинамике движущихся тел» заложены характеристики скорости света: он постоянен, распространяется в вакууме, обладает самой большой скоростью, которую невозможно превзойти, а ее значение не зависит от источника. Скорость света в вакууме с, которая до сих пор не использовалась, но уже присутствовала в трудах Максвелла, приобрела, таким образом, свое основополагающее значение константы в структуре пространство — время.
Со скоростью разобрались, а как там с природой и составом света?
Ньютон считал свет корпускулярным явлением — потоком частиц, движущихся… в эфире, который занимает пространство.
По мнению Герца и Максвелла, свет не имеет корпускулярной составляющей, он обладает волновой природой, связанной с быстрыми колебаниями электрических и магнитных полей. Корпускулярная или волновая? Работы Планка подправили теорию Герца. По Планку, свет состоит из квантов, или фотонов. Однако Планк уперся в отсутствие подтверждения этих расчетов опытным путем. По мнению немецкого ученого, излучение света дискретно, однако Планк не уловил произвольность частоты излучения и, в частности, трудность излучения света высокой частоты. Планк думал, что ошибся.
Чтобы попытаться разрешить противоречие между двумя противоположными и несовместимыми версиями (что же такое свет: волна или частицы?), Эйнштейн применит статистическую механику. Он воспользовался теорией вероятностей, перенеся ее в область излучения. Он начал с происхождения световых пучков. Нагретый металл излучает электроны. Полученная световая энергия переносится «квантами» (позже их станут называть фотонами). Это фотоэлектрический эффект (он известен: его
30
Филипп Ленард (1862–1947) — немецкий физик. Руководитель Радиологического института в Гейдельберге (с 1909 года). Изучал природу катодных лучей и их свойства (Нобелевская премия, 1905). Исследовал также свойства ультрафиолетового излучения, явления фотоэффекта (экспериментально показал, что скорость фотоэлектронов зависит только от частоты света).
Спектр света зависит от частот светоизлучения. Но почему при определенных частотах не возникает светового луча? Планк отступил перед этим препятствием. Эйнштейн его преодолеет. На его взгляд, здесь не действует сплошной закон — всё или ничего. А значит, не существует «сплошного светового поля». Применяя статистические расчеты, Эйнштейн обнаружил, что световая энергия выделяет не кванты, как думал Планк, а порцииквантов. По Эйнштейну, если энергии квантов недостаточно (порция слишком мала), она не позволяет отделить материю — электрон. А без излучения этого электрона не будет видимого света.
Эйнштейн опирался на труды Максвелла о природе энергии электромагнитных явлений, применяя их к свету. Его вероятностный подход, отличавшийся от подхода Планка, породил формулу энтропии [31] излучения в заданном объеме. Из этого он вывел отношение между энергией и частотой:
E = hv,
которую он приписал свойству излучения. И вывод: энергия света распределяется в пространстве дискретно в форме квантов света.
31
Энтропия выражает деградацию энергии до состояния нарастающего беспорядка.
То, что Планк считал математической уловкой, Эйнштейн сделал основой своей теории. Он ввел в физику квантование световой энергии. Фотоэлектрический эффект объясняется «гипотезой о квантах света».
Планк уже выполнил часть этой работы в 1900 году: константа Планка никуда не делась. Повысив температуру, увеличим частоту, получим энергию более высокого спектра, например фиолетового. Но тайна дискретного распространения света оставалась неразгаданной.
По Планку, дискретность спектра световой энергии невозможно объяснить. По Эйнштейну, его прерывистое излучение обусловлено частотой колебания. Свет обладает свойствами волн и корпускулярной составляющей. Немыслимый парадокс: частицы не могут обладать свойствами волн, а волны — свойствами частиц. Частота колебания и частицы несовместимы. Либо волновая природа, либо корпускулярная: наука заставляет выбирать. Эйнштейн не выбирает. Точнее, он выбирает и то и другое. Он опирается на труды Максвелла и Больцмана о распределении энергии колебания электронов в теле и принимает парадоксальноесочетание волновых и корпускулярных свойств.
Поскольку поля фотонов не могут заполнить всё пространство, ученый утверждает концепцию дискретности светового излучения. Эйнштейн объединяет понятие кванта с понятием «вероятности» волнового колебания. Энергия становится пропорциональна частоте. С точки зрения классической физики — полнейшая чушь! Для современной науки — огромный прогресс!
Заключение Эйнштейна: свет состоит из дискретного потока частиц, перемещающихся с энергией, которая зависит лишь от частоты колебаний.