Фантастическая реальность мироздания
Шрифт:
Иными словами, если раньше жесткая НФ (hard science fiction) имела дело, в основном, с фантастическими изобретениями, то сейчас настало время для фантастических открытий.
Однако, читатель НФ оказался не готов (или не вполне готов) к такому развитию событий. Как и в «реальной» науке, в науке фантастической роль объяснения все еще недооценивается.
Обратимся опять к книге Дойча:
«Некоторые философы, и даже ученые, недооценивают роль объяснения в науке. Для них основная цель научной теории заключается не в объяснении чего-либо, а в предсказании результатов экспериментов: все содержание теории заключено в формуле предсказания.
Известный физик Стивен Вайнберг (инструменталист — по определению Дойча), лауреат Нобелевской премии, писал, например, в книге «Гравитация и космология»:
"Важно иметь возможность предсказать картины звездного неба на фотоснимках астрономов, частоту спектральных линий и т. п., а то, припишем ли мы эти прогнозы физическому воздействию гравитационных полей на движение планет и фотонов или искривлению пространства и времени, просто не имеет значения".
Инструментализм главенствовал и в фантастической науке ХХ века. Объяснение структуры реальности авторы-фантасты оставляли ученым, сами же в большинстве случаев обращались к конкретным научно-техническим прогнозам, которые порой сбывались с удивлявшей читателей точностью и приводили к мысли, что эти прогнозы и есть одна из главных функций в НФ.
Фантастическая и «обычная» науки объясняют одну и ту же — окружающую нас — реальность. За полтора века произошли по крайней мере две революции в науке: в на¬чале ХХ века и во второй его половине. Революции в фантасти¬ческой науке прошли не столь бурно, но, тем не менее, были. Связаны эти революции с появлением в фантастике идей, в корне менявших представления авторов (да и ученых!) о мирозда¬нии, идей, создававших новые миры, новые исследовательские и литературные поля. Это были открытия сродни теории относитель¬ности.
Какие открытия, объясняющие структуру реальности, были сделаны писателями-фантастами? Перечислю лишь некоторые и прошу учесть, что речь идет не о привычных предсказаниях фантастов, о которых следует говорить «исполнилось — не исполнилось», а о гипотезах, так или иначе объясняющих нашу физическую реальность — о таких гипотезах нужно рассуждать в других терминах: не «исполнилось — не исполнилось», а соответствует современным научным объяснениям или не соответствует. При этом нужно иметь в виду, что верной, как показала жизнь, может, в конце концов, оказаться именно фантастическая гипотеза, а не сугубо научная.
Одно из самых интересных фантастических открытий: возможность передвижения не только по трем известным нам измерениям, но и по четвертому — времени. Сделал это открытие Герберт Уэллс в 1896 году на страницах романа «Машина времени».
Сама идея времени как четвертого измерения не принадлежит Г.Уэллсу. Писатель присутствовал на лекции американского астронома Саймона Ньюкома, излагавшего научные представления о сущности времени. Открытие фантаста заключалось в другом: он «обнаружил», что во времени, как и в пространстве, можно передвигаться, причем с очень большой скоростью.
Перемещение во времени стало принципиально новой идеей, не имевшей аналогов и открывшей для фантастической литературы необозримые возможности, до сих пор не раскрытые пол¬ностью. Сколько уже написано и еще будет написано произведений о хроноклазмах — парадоксах, неизбежно возникающих, если отп¬равиться в прошлое! Невозможно перечислить все написанное о путешествиях по времени, даже если отбирать только произведения высокого класса: «Хроноклазм» Д.Уиндэма, "Конец Вечности" А.Азимова, "Патруль Времени" П.Андерсона, рассказы Р.Брэдбери, Р.Шекли и др…
Идея развивалась: после «Хроноклазма» невозможно стало писать о путешествиях в прошлое и будущее, как о линейном процессе, как о чем-то вроде поездки на автомобиле в другой город и последующем возвращении домой. Фантасты вынуждены были исследовать появление «временных петель», и фантастическая наука сделала неизбежный вывод о нелинейности истории — о том, что любое перемещение во времени изменяет исторический процесс и приводит к тому, что возвращается путешественник вовсе не в то настоящее, которое покинул. Поэтому фантастика пришла к идее параллельных миров и объединяющей параллельные миры идее Мультиверсума раньше, чем «обычная» наука.
В науке понятие Вселенной сменилось понятием о Мультиверсе — бесконечномерном мироздании, в котором наша Вселенная является лишь одной из множества физических реальностей. Каждое наше решение, каждый поступок создают новые ветви мироздания, и уж тем более — новые вселенные возникают при каждом путешествии во времени. Яснее всего это показано в опубликованном в 1996 году (через сто лет после создания уэллсовского прототипа) романе Стивена Бакстера «Корабли времени». Этот роман — прямое продолжение «Машины времени», но современный автор, обладая знаниями физики и фантастики конца ХХ века показал все возможности темпоральных перемещений в многомирии.
Ученые долгое время полагали идею о путешествиях по вре¬мени чистейшей и неосуществимой фантастикой. Признавался толь¬ко один способ оказаться в ином времени — отправиться в полет на субсветовой скорости и вернуться к потомкам. Сейчас, после того, как идея Мультиверса вошла в ареал науки, ученые обсуждают возможность путешествий во времени — см., например, книгу доктора физико-математических наук А.К.Гуца «Элементы теории времени», работы Стивена Хокинга, Игоря Новикова и др.
Открытие возможности перемещения во времени относится к тем достижениям фантастики, которые сильнейшим образом возбудили научную мысль, заставили науку пересмотреть многие физические положения.
Сто лет понадобилось, чтобы ученые и писатели сошлись во мнении: научная фантастика и фантастическая наука одинаково описывают структуру физической реальности.
Два других фантастических открытия, о которых пойдет речь, напротив, оказались настолько актуальны, что достаточно быстро вошли в ареал науки. Сто лет назад Аристотелево предположение о том, что все состоит из атомов — неделимых частиц вещества, — было в науке общепринятым, высказывались уже идеи о том, что атом имеет сложную внутреннюю структуру, предлагались гипотезы, объяснявшие, как может быть устроен атом. Однако, до открытия Резерфорда оставалось еще четыре года, когда в России вышел роман Александра Богданова «Красная звезда». В этом романе впервые шла речь о том, что каждый атом обладает большой внутренней энергией, которую можно извлечь и использовать — в частности, в двигателях космического корабля-этеронефа.