Чтение онлайн

на главную

Жанры

Феномен науки. Кибернетический подход к эволюции

Фёдорович Турчин Валентин

Шрифт:

В 1674 г. Гюйгенс по поводу одного соотношения между комплексными числами замечает: «Здесь таится что-то для нас непонятное». «Непостижимые загадки математики» — любимое выражение начала XVIII столетия. Даже Коши в 1821 г. обладал еще весьма неясными представлениями о действиях над комплексными величинами3.

Последние сомнения и неясности, связанные с не интерпретируемыми объектами, исчезли только с введением аксиоматического подхода к математическим теориям и окончательным осознанием «языковости» математики. Сейчас мы считаем, что удивляться или противиться наличию в математике таких объектов не больше оснований, чем оснований удивляться или противиться наличию у автомобиля других деталей, кроме четырех колес, которые непосредственно соприкасаются с землей и приводят автомобиль в движение. Комплексные числа и тому подобные объекты — это внутренние «колесики» математических моделей, которые связаны с другими «колесиками», но не связаны непосредственно с «землей», т. е. элементами

неязыковой действительности. Поэтому можно действовать с ними, как с формальными объектами (т. е. со знаками, нарисованными на бумаге), в соответствии с их свойствами, определяемыми' аксиомами. И не следует огорчаться из-за того, что вы не можете пойти в булочную и купить -15 бубликов.

12.8. Иерархия теорий

Осознание принципа описания действительности с помощью формализованного языка порождает, как мы видели, эффект лестницы. Вот пример лестницы из трех ступенек. Арифметика — это теория, которую мы применяем непосредственно к таким объектам неязыковой реальности, как яблоки, овцы, рубли, килограммы товаров. По отношению к ней школьная алгебра является метатеорией, которая знает лишь одну реальность — числа и числовые равенства, а ее буквенный язык — это метаязык по отношению к языку цифр арифметики. Современная аксиоматическая алгебра является метатеорией по отношению к школьной алгебре. Она имеет дело с некоторыми объектами (природа которых не уточняется) и некоторыми операциями над этими объектами (природа операций также не уточняется). Все выводы делаются из свойств операций. В приложениях аксиоматической алгебры к проблемам, сформулированным на языке школьной алгебры, объекты интерпретируются как переменные, а операции — как арифметические действия. Но современная алгебра с не меньшим успехом применяется и к другим ветвям математики, например к анализу или геометрии.

Углубленное изучение математической теории порождает новые математические теории, которые рассматривают исходную теорию в ее различных аспектах. Следовательно, каждая из этих теорий в некотором смысле проще (фундаментальнее), чем исходная теория, подобно тому, как исходная теория проще, чем действительность, которую она рассматривает всегда лишь в каком-то одном аспекте. Происходит расщепление моделей, выделение из сложной модели набора более простых моделей. Формально новые теории столь же универсальны, как исходная теория: их можно применять к любым объектам, которые удовлетворяют аксиомам независимо от их природы. При аксиоматическом подходе различные математические теории образуют, строго говоря, не иерархию по управлению, а иерархию по сложности. Однако, рассматривая те модели, которые на самом деле выражают законы природы (т. е. используются в приложениях математики), мы видим, что математические теории вполне отчетливо делятся на уровни сообразно характеру объекта, к которому они в действительности применяются. Арифметика и элементарная геометрия непосредственно контактируют с неязыковой действительностью, а какая-нибудь теория групп используется для создания новых физических теорий, из которых извлекаются следствия, выраженные на языке алгебры и анализа, которые затем «доводятся до числа» и только после этого сравниваются с экспериментом. И это распределение теорий по уровням соответствует в целом тому порядку, в котором они возникали исторически, ибо возникали они путем последовательных метасистемных переходов. Ситуация здесь в сущности такая же, как и в иерархии орудий производства. Ведь и отверткой можно при желании ковырять землю. Однако изобретена она была не для того и нужна в действительности лишь тому, у кого есть винты, болты или шурупы. Теорию групп можно иллюстрировать простыми примерами из обыденной жизни или элементарной математики, но по-настоящему ее используют лишь математики и физики-теоретики. Продавцу в магазине или инженеру-практику теория групп нужна не больше, чем отвертка первобытному человеку.

12.9. Аксиоматический метод

Для древних греков объекты математики имели реальное существование в «мире идей». Некоторые свойства этих объектов представлялись умственному взору совершенно неоспоримыми и объявлялись аксиомами, другие — неочевидные — следовало доказывать, опираясь на аксиомы. При таком подходе не было большой необходимости в точной формулировке и полном перечне всех аксиом: если в доказательстве используется какое-то неоспоримое свойство объектов, то не так уж важно, занесено оно в список аксиом или нет — истинность доказываемого свойства от этого не страдает. Хотя Евклид в своих «Началах» и приводит список определений и аксиом (включая постулаты), он, как мы видели в главе 10, сплошь и рядом использует положения, интуитивно совершенно очевидные, но не входящие в число аксиом. Что же касается его определений, то число их больше, чем число определяемых объектов, и они совершенно непригодны для использования в процессе доказательства. Список определений в первой книге «Начал» начинается следующим образом.

1. Точка есть то, что не имеет частей.

2. Линия есть длина без ширины.

3. Концы линий суть точки.

4. Прямая линия есть та, которая одинаково лежит относительно всех своих точек.

И так далее, всего 34 определения. Швейцарский геометр Ж. Ламберт (1728–1777) заметил по этому поводу: «То, что Евклид предпосылает в таком изобилии опеределения, есть нечто вроде номенклатуры.

Он, собственно говоря, поступает так, как поступает, например, часовщик или другой ремесленник, начиная знакомить учеников с названиями орудий своего мастерства».

Тенденция к формализации математики породила тенденцию к уточнению определений и аксиом. Уже Лейбниц обратил внимание на то, что построение Евклидом равностороннего треугольника опирается на положение, которое из определений и аксиом не вытекает (мы разбирали это построение в главе 10). Однако лишь создание неевклидовой геометрии Н. Лобачевским (1792–1856), И. Больяи (1802–1860) и К. Гауссом (1777–1855) повлекло за собой всеобщее признание аксиоматического подхода к математическим теориям как основного метода математики. Первоначально «воображаемая» геометрия Лобачевского, как и все «воображаемые» явления в математике, была встречена с недоверием и враждебностью. Но вскоре неопровержимый факт существования этой геометрии стал менять точку зрения математиков на отношение между математической теорией и действительностью. Математик не мог отказать геометрии Лобачевского в праве на существование, ибо была доказана ее непротиворечивость. Правда, геометрия Лобачевского противоречила нашей геометрической интуиции, но при достаточно малом параметре кривизны пространства она в малых объемах пространства была неотличима от геометрии Евклида. Что же касается космических масштабов, то совершенно не очевидно, что мы можем и здесь довериться нашей интуиции, сформировавшейся под воздействием опыта, ограниченного малыми объектами. Итак, мы имеем перед собой две конкурирующие геометрии, и возникает вопрос, какая же из них «истинная»?

Стоит задуматься над этим вопросом, как становится ясным, что слово «истинная» не зря взято в кавычки. Строго говоря, эксперимент может дать ответ не на вопрос об истинности или ложности геометрии, а лишь на вопрос о ее полезности или бесполезности, а точнее, о степени полезности, ибо совсем бесполезных теорий, пожалуй, не существует. Эксперимент имеет дело не с геометрическими, а с физическими понятиями. При обращении к эксперименту мы вынуждены как-то интерпретировать геометрические объекты, например, считать, что прямые линии реализуются световыми лучами. Если мы обнаружим, что сумма углов треугольника, образованного световыми лучами, меньше 180, то это вовсе не значит, что геометрия Евклида «ложна». Быть может, она «истинна», но свет распространяется не по прямым, а по дугам окружностей или каким-либо другим кривым линиям. Выражаясь более точно, эксперимент этот покажет, что лучи света нельзя рассматривать как евклидовы прямые. Сама евклидова геометрия этим опровергнута не будет. То же относится, конечно, и к неевклидовой геометрии. Эксперимент может дать ответ на вопрос, является ли луч света воплощением прямой Евклида или прямой Лобачевского, и это, конечно, важный аргумент при выборе той или другой геометрии в качестве основы для физических теорий, но права на существование у той геометрии, которой «не повезло», он не отнимает. Быть может, ей повезет в следующий раз, и она окажется весьма удобной для описания какого-то другого аспекта действительности.

Подобные соображения привели к переоценке относительной важности природы математических объектов и их свойств (включая отношения как свойства пар, троек и т. д. объектов). Если прежде объекты представлялись имеющими независимое реальное существование, а их свойства — чем-то вторичным и производным от природы, то теперь именно свойства объектов, зафиксированные в аксиомах, стали той основой, которая определяет специфику данной математической теории, а объекты утратили всякую специфику и вообще утратили свою «природу», т. е. связываемые с ними в обязательном порядке интуитивные представления; в аксиоматической теории объект это нечто, удовлетворяющее аксиомам. Аксиоматический подход окончательно утвердился на рубеже XIX и XX вв. Интуиция, конечно, сохранила свое значение основного (и, пожалуй, единственного) инструмента математического творчества, но окончательным результатом творчества стала считаться полностью формализованная аксиоматическая теория, которая путем интерпретации может применяться к другим математическим теориям или к неязыковой действительности.

12.10. Метаматематика

Формализация логики была начата (если не считать первых попыток Лейбница) в середине XIX в. работами Дж. Буля (1815–1864) и закончена к началу XX в. главным образом благодаря работам Шредера, К. С. Пирса, Фреге и Пеано. В фундаментальном труде Рассела и Уайтхеда «Principia Mathematica» (вышел в 1910 г.) уже используется формализованный язык, который, если не считать несущественных вариаций, является общепринятым по настоящее время. Этот язык мы описали в главе 6, теперь мы дадим краткий набросок формализации логического вывода.

Существует несколько эквивалентных друг другу формальных систем логического вывода. Мы остановимся на самой компактной. Она использует всего одну логическую связку — импликацию и один квантор — квантор общности . Зато она включает логическую константу, которая изображается символом 0 и обозначает тождественно ложное высказывание. Используя эту константу, можно описать отрицание высказывания p как p 0, а из отрицания и импликации легко построить и остальные логические связки. Квантор существования выражается через отрицание и квантор общности, таким образом, наш сжатый язык эквивалентен полному языку, рассмотренному в главе 6.

Поделиться:
Популярные книги

Последний Паладин. Том 3

Саваровский Роман
3. Путь Паладина
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 3

Последний попаданец 5

Зубов Константин
5. Последний попаданец
Фантастика:
юмористическая фантастика
рпг
5.00
рейтинг книги
Последний попаданец 5

Убивать чтобы жить 6

Бор Жорж
6. УЧЖ
Фантастика:
боевая фантастика
космическая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 6

6 Секретов мисс Недотроги

Суббота Светлана
2. Мисс Недотрога
Любовные романы:
любовно-фантастические романы
эро литература
7.34
рейтинг книги
6 Секретов мисс Недотроги

Измена

Рей Полина
Любовные романы:
современные любовные романы
5.38
рейтинг книги
Измена

Курсант: Назад в СССР 13

Дамиров Рафаэль
13. Курсант
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Курсант: Назад в СССР 13

Газлайтер. Том 6

Володин Григорий
6. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 6

Купидон с топором

Юнина Наталья
Любовные романы:
современные любовные романы
7.67
рейтинг книги
Купидон с топором

Виконт. Книга 3. Знамена Легиона

Юллем Евгений
3. Псевдоним `Испанец`
Фантастика:
фэнтези
попаданцы
аниме
7.00
рейтинг книги
Виконт. Книга 3. Знамена Легиона

Попаданка в деле, или Ваш любимый доктор - 2

Марей Соня
2. Попаданка в деле, или Ваш любимый доктор
Любовные романы:
любовно-фантастические романы
7.43
рейтинг книги
Попаданка в деле, или Ваш любимый доктор - 2

Усадьба леди Анны

Ром Полина
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Усадьба леди Анны

Титан империи 2

Артемов Александр Александрович
2. Титан Империи
Фантастика:
фэнтези
боевая фантастика
аниме
5.00
рейтинг книги
Титан империи 2

Вечный. Книга I

Рокотов Алексей
1. Вечный
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга I

Убивать чтобы жить 5

Бор Жорж
5. УЧЖ
Фантастика:
боевая фантастика
космическая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 5