Чтение онлайн

на главную

Жанры

Феномен науки. Кибернетический подход к эволюции

Фёдорович Турчин Валентин

Шрифт:

Возрастание абстрактности (конструктности) общих принципов физических теорий, их отдаление от непосредственных опытных фактов приводит к тому, что в методе проб и ошибок все труднее становится найти пробу, имеющую шансы на успех. Разум начинает просто нуждаться в крыльях для воспарения, о чем и говорит Эйнштейн. С другой стороны, увеличение дистанции от общих принципов до проверяемых следствий делает общие принципы в известных пределах неуязвимыми для опыта, на что также часто указывали классики новейшей физики. Обнаружив расхождение между следствиями теории и экспериментом, исследователь оказывается перед альтернативой: искать причины расхождения в общих принципах теории или же где-то на пути от принципов к конкретным следствиям. Вследствие дороговизны общих принципов и больших затрат, необходимых для перестройки теории в целом, сначала всегда пробуют второй путь. Если удается достаточно изящным способом модифицировать вывод следствий из общих принципов так, что они согласуются с экспериментом, то все успокаиваются и проблема считается решенной. Но иногда модификация выглядит явно, как грубая заплата, а порой заплаты наслаиваются друг на друга и теория начинает трещать по всем швам; тем не менее, ее

выводы согласуются с данными опыта и она продолжает сохранять свою предсказательную силу. Тогда возникают вопросы: как следует относиться к общим принципам такой теории? Надо ли стремиться заменить их какими-то другими принципами? При какой степени «залатанности» имеет смысл отбрасывать старую теорию?

13.4. Критерии выбора теорий

Прежде всего, заметим, что ясное осознание научных теорий как языковых моделей действительности значительно снижает остроту конкуренции между научными теориями по сравнению с наивной точкой зрения (родственной платонизму), согласно которой языковые объекты теории лишь выражают какую-то реальность и поэтому каждая теория либо «на самом деле» истинна, если эта реальность «на самом деле» существует, либо «на самом деле» ложна, если эта реальность вымышленная. Эта точка зрения порождена перенесением положения, которое имеет место для языка конкретных фактов, на язык понятий-конструктов. Когда мы сравниваем два конкурирующих утверждения: «в этом стакане — чистый спирт» и «в этом стакане — чистая вода», мы знаем, что эти утверждения допускают опытную проверку и то из них, которое не подтвердилось, теряет всякий модельный смысл, всякую долю истинности; оно на самом деле ложное и только ложное. Совсем иначе обстоит дело с утверждениями, выражающими общие принципы научных теорий. Из них выводится множество проверяемых следствий, и если некоторые из них оказываются ложными, то обычно говорят, что к данной сфере опыта исходные принципы (или способы вывода следствий) неприменимы; обычно удается установить и формальные критерии применимости. Поэтому общие принципы в некотором смысле «всегда истинны», точное понятие истинности и ложности неприменимы к ним, а применимо лишь понятие о большей или меньшей их полезности для описания действительных фактов. Подобно аксиомам математики, общие принципы физики — это абстрактные формы, в которые мы стремимся втиснуть природные явления. Конкурирующие принципы отличаются тем, насколько хорошо они это позволяют сделать.

Но что значит хорошо?

Если теория — это модель действительности, то, очевидно, она тем лучше, чем шире область ее применимости и чем больше предсказаний она может сделать. Это и есть первый критерий для сравнения теорий — критерий общности и предсказательной силы теории.

Далее, поскольку теории — это модели, рассчитанные на использование людьми, они, очевидно, тем лучше, чем проще в употреблении. Это второй критерий — критерий простоты теории.

Эти критерии довольно очевидны. Если рассматривать научные теории как нечто стабильное, не подверженное развитию и улучшению, то, пожалуй, трудно было бы выдвинуть в дополнение к этим критериям какие-либо еще. Но человечество непрерывно развивает и улучшает свои теории и это порождает еще один критерий — динамический, который и оказывается решающим. Об этом критерии хорошо сказано Филиппом Франком в книге «Философия науки», и мы приведем его слова.

Если мы посмотрим, какие теории действительно предпочитались из-за их простоты, то найдем, что решающим основанием для признания той или иной теории было не экономическое и не эстетическое, а скорее то, которое часто называлось динамическим. Это значит, что предпочиталась та теория, которая делала науку более динамичной, т. е. более пригодной для экспансии в область неизвестного. Это можно уяснить с помощью примера, к которому мы часто обращались в этой книге: борьба между коперниковской и птолемеевской системами. В период между Коперником и Ньютоном очень много оснований приводилось в пользу как одной, так и другой системы. В конце концов, однако, Ньютон выдвинул теорию движения, которая блестяще объясняла все движения небесных тел (например, комет), в то время как Коперник, так же как и Птолемей, объяснял только движения в нашей планетной системе... Однако законы Ньютона основывались на обобщении коперниковской теории, и мы вряд ли можем представить себе, как они могли бы быть сформулированы, если бы он исходил из птолемеевской системы. В этом, как и во многих других отношениях, теория Коперника была более «динамичной», т. е. имела большее эвристическое значение. Можно сказать, что теория Коперника была математически более «простой» и более динамичной, чем теория Птолемея4.

Эстетический критерий, или критерий красоты теории, о котором упоминает Франк, трудно защищать как самостоятельный, независимый от других критериев. Однако он приобретает большое значение как интуитивный синтез всех указанных критериев. Теория представляется ученому красивой, если она достаточно обща и проста и он предчувствует, что она окажется динамичной. Конечно, он может при этом и ошибиться.

13.5. Физика микромира

В физике, как и в чистой математике, по мере возрастания абстрактности теорий укоренялось понимание их языкового характера. Решающий толчок этот процесс получил после того, как в начале XX в. физика вторглась в пределы мира атомов и элементарных частиц и были созданы теория относительности и квантовая механика. Особенно большую роль сыграла квантовая механика. Эту теорию вообще невозможно понять, если не напоминать себе постоянно, что она представляет собой лишь языковую модель микромира, а не изображение того, как он выглядел бы «на самом деле», если бы можно было бы увидеть в микроскоп с чудовищным увеличением, и что такого изображения нет и быть не может. Поэтому представление о теории как о языковой модели действительности стало составной частью современной физики, стало необходимым физикам для успешной работы. В результате среди физиков стало меняться и внутреннее отношение к характеру своей деятельности. Если раньше физик-теоретик

ощущал себя открывателем чего-то существовавшего до него и независимо от него, подобно мореплавателю, открывающему новые земли, то сейчас он ощущает себя, скорее, создателем чего-то нового, подобно мастеру, искусно владеющему своей профессией и создающему новые здания, машины, инструменты. Это изменение проявилось даже в оборотах речи. О Ньютоне говорят по традиции, что он «открыл» исчисление бесконечно малых и небесную механику; о современном ученом скажут, что он «создал», или «предложил», или «разработал» новую теорию; выражение «открыл» прозвучит архаично. Это, конечно, нисколько не ущемляет достоинства теоретиков, ибо созидание – занятие не менее почетное и вдохновляющее, чем открытие.

Почему же квантовая механика потребовала осознания «языковости» теорий?

Согласно первоначальной атомистической концепции атомы представлялись просто очень маленькими частицами вещества, маленькими тельцами, имеющими, в частности, определенную форму и цвет, от которых зависят физические свойства и цвет больших скоплений атомов. Атомная физика начала XX в. перенесла понятие атома («неделимый») на элементарные частицы — электроны и протоны (к которым вскоре добавился нейтрон), а слово «атом» стало обозначать конструкцию, состоящую из атомного ядра (оно, по первоначальной гипотезе, являлось скоплением протонов и электронов), вокруг которого вращаются электроны, как планеты вокруг Солнца. Такое представление о строении вещества считалось гипотетическим, но чрезвычайно правдоподобным. Сама гипотетичность понималась в том смысле, о котором мы говорили выше: планетарная модель атома должна быть либо истинной, либо ложной. Если она истинна (а в этом почти не было сомнений), то электроны — это «на самом деле» маленькие частички вещества, которые описывают определенные траектории вокруг ядра. Правда, по сравнению с атомами древних элементарные частицы уже стали утрачивать некоторые, казалось бы, совершенно необходимые для частиц вещества свойства. Стало ясно, что понятие цвета совершенно неприменимо к электронам и протонам; не то, чтобы мы не знали, какого они цвета, а просто вопрос этот не имеет смысла, ибо цвет есть результат взаимодействия со светом по крайней мере атома в целом, а точнее — скопления многих атомов. Возникали также сомнения относительно понятий о форме и размерах электронов. Но святая святых представления о материальной частице — наличие у частицы в каждый момент времени определенного положения в пространстве — оставалось несомненным и само собой разумеющимся.

13.6. Соотношение неопределенностей

Квантовая механика разрушила это представление. Она была вынуждена это сделать под напором новых экспериментальных данных. Оказалось, что элементарные частицы ведут себя при определенных условиях не как частицы, а как волны, но при этом они не «размазываются» по большой области пространства, а сохраняют свои малые размеры и свою дискретность, размазывается же лишь вероятность их обнаружения в той или иной точке пространства.

< image l:href="#"/>

Рис. 13.1. Дифракция электронов

Рассмотрим в качестве иллюстрации рис. 13.1. На нем изображена электронная пушка, посылающая электроны определенного импульса на диафрагму, за которой расположен экран. Диафрагма сделана из непрозрачного для электронов материала, но имеет два отверстия, через которые электроны и попадают на экран. Экран покрыт веществом, которое светится под действием электронов, так что в том месте, куда попал электрон, происходит вспышка. Поток электронов из пушки достаточно редкий, так что каждый электрон проходит через диафрагму и фиксируется на экране независимо от других. Расстояние между отверстиями в диафрагме во много раз больше размеров электронов, полученных любыми оценками, но сравнимо по порядку с величиной h/p, где h — константа Планка, а p — импульс электрона, т. е. произведение его скорости на массу.

Таковы условия эксперимента. Результатом его является распределение вспышек на экране. Первый вывод из анализа результатов эксперимента таков: электроны попадают в различные точки экрана, и предсказать, в какую точку попадет каждый электрон, невозможно, можно только предсказать вероятность попадания в ту или иную точку, т. е. среднюю плотность вспышек после попадания в экран очень большого числа электронов.

Но это еще полбеды. Можно представить себе, что различные электроны пролетают в разных местах отверстий в диафрагме, испытывают различной силы влияния со стороны краев отверстий и поэтому отклоняются по-разному. Настоящие неприятности возникают тогда, когда мы начинаем исследовать среднюю плотность вспышек на экране и сравнивать ее с теми результатами, которые получаются, когда мы закрываем одно из отверстий в диафрагме. Если электрон — это маленькая частица материи, то, попадая в район диафрагмы, он либо поглощается, либо проходит через одно из двух отверстий. Так как отверстия диафрагмы расположены симметрично относительно электронной пушки, в среднем половина электронов проходит через каждое отверстие. Значит, если мы закроем одно из отверстий и пропустим через диафрагму миллион электронов, а затем закроем второе отверстие, но откроем первое и пропустим еще миллион электронов, то мы должны получить такую же среднюю плотность вспышек, как если бы мы пропустили через диафрагму с двумя отверстиями два миллиона электронов. Но оказывается, что это не так! При двух отверстиях распределение получается иным, оно содержит максимумы и минимумы, как при дифракции волн.

Рассчитать среднюю плотность вспышек можно с помощью квантовой механики, связав с электронами так называемую волновую функцию, представляющую собой некое воображаемое поле, интенсивность которого пропорциональна вероятности наблюдаемых событий.

У нас отняло бы слишком много места описание всех попыток согласовать представление об электроне как об «обычной» частице (такие частицы стали называть классическими в отличие от квантовых) с экспериментальными данными об их поведении. Этому вопросу посвящена обширная литература, как специальная, так и популярная. Все такие попытки оказались безуспешными. Выяснились следующие две вещи.

Поделиться:
Популярные книги

Изгой. Трилогия

Михайлов Дем Алексеевич
Изгой
Фантастика:
фэнтези
8.45
рейтинг книги
Изгой. Трилогия

Старатель 2

Лей Влад
2. Старатели
Фантастика:
боевая фантастика
космическая фантастика
5.00
рейтинг книги
Старатель 2

Купеческая дочь замуж не желает

Шах Ольга
Фантастика:
фэнтези
6.89
рейтинг книги
Купеческая дочь замуж не желает

Кодекс Охотника. Книга IX

Винокуров Юрий
9. Кодекс Охотника
Фантастика:
боевая фантастика
городское фэнтези
попаданцы
5.00
рейтинг книги
Кодекс Охотника. Книга IX

Школа Семи Камней

Жгулёв Пётр Николаевич
10. Real-Rpg
Фантастика:
фэнтези
рпг
5.00
рейтинг книги
Школа Семи Камней

Тайны ордена

Каменистый Артем
6. Девятый
Фантастика:
боевая фантастика
попаданцы
7.48
рейтинг книги
Тайны ордена

Убивать чтобы жить 9

Бор Жорж
9. УЧЖ
Фантастика:
героическая фантастика
боевая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 9

Мимик нового Мира 11

Северный Лис
10. Мимик!
Фантастика:
юмористическое фэнтези
постапокалипсис
рпг
5.00
рейтинг книги
Мимик нового Мира 11

Пришествие бога смерти. Том 5

Дорничев Дмитрий
5. Ленивое божество
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Пришествие бога смерти. Том 5

Аномальный наследник. Том 3

Тарс Элиан
2. Аномальный наследник
Фантастика:
фэнтези
7.74
рейтинг книги
Аномальный наследник. Том 3

Опер. Девочка на спор

Бигси Анна
5. Опасная работа
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Опер. Девочка на спор

Имя нам Легион. Том 4

Дорничев Дмитрий
4. Меж двух миров
Фантастика:
боевая фантастика
рпг
аниме
5.00
рейтинг книги
Имя нам Легион. Том 4

Приручитель женщин-монстров. Том 8

Дорничев Дмитрий
8. Покемоны? Какие покемоны?
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Приручитель женщин-монстров. Том 8

Личник

Валериев Игорь
3. Ермак
Фантастика:
альтернативная история
6.33
рейтинг книги
Личник