Ферсман
Шрифт:
Но атомам этих металлов свойствен одинаковый заряд и возможность их совместного нахождения не так уж поразительна.
Однако существует совсем чуждый им металл, ничего общего не имеющий с ними по химическим свойствам, — литий. Обладая сходным радиусом иона — 0,78 ангстрема, он тоже обладает способностью замещать двухвалентное железо.
Подобным путем объяснился целый ряд важнейших явлений, многие из которых минералоги знали и раньше, встречаясь с ними на практике, но останавливались перед ними в недоумении, как перед неразрешимой загадкой. Они знали, например, литиевые слюды в рудных жилах, знали, что они всегда железистые, даже добывали этот минерал (он называется цинвальдит) для извлечения лития,
Таким образом, сама кристаллическая постройка определяет собой характер тех элементов, которые она может в себя включать. Если речь идет об элементах, которые с достаточной степенью приближения обладают сходным радиусом иона с другими более важными, более распространенными элементами, то геохимик уверенно предсказывает: они не будут образовывать самостоятельных ячеек, а должны как бы обезличиться. И действительно, таковы, например, скандий и галлий — элементы, знаменитые тем, что открытие их явилось первым торжеством предсказаний Менделеева, основанных на Периодической системе химических элементов. Этим же объясняется и то, что к моменту составления Менделеевым первого варианта своей таблицы эти элементы не были известны. По радиусу ионов они близки: первый — к атомам магния, второй — к атомам алюминия. Поэтому совершенно понятно, что они всегда будут встречаться только в качестве небольших примесей к атомам магния и алюминия И нельзя себе представить таких условий, которые заставили бы их в природе соединиться вместе и образовать решетку собственного минерала. Большие месторождения галлия, повидимому, невозможны, ибо это обезличенный элемент. У него нет тех черт, которые являются обязательной характеристикой элемента, способного к концентрации в земной коре. Так геохимики объясняют, почему во времена Менделеева, когда этот элемент был впервые открыт Лекоком де Буабодраном, это открытие могло совершиться при весьма несовершенной в то время технике отделения сходных элементов, как это и предсказал Менделеев, только с помощью спектрального анализа.
Еще более интересный пример, подчеркивающий значение законов решетки для рассеяния и концентрации элементов, представляет геохимия радиоактивных элементов. Здесь картина осложняется тем, что эти элементы обладают существенной особенностью на протяжении определенного промежутка времени распадаться, то-есть превращаться в новые элементы, с другими химическими свойствами. Кристаллическая решетка, включающая в себя, скажем, атомы урана, при распаде этих атомов должна как-то восполниться. Но место распавшегося атома урана может быть занято только атомом, близким к нему по свойствам. Для этого совсем не подходит атом радия, образующийся в результате распада урана. Его атом не может встать в кристаллическую решетку на место урана. Именно поэтому в первичных минералах атомы радия, в отличие от атомов урана, не входят в кристаллическую решетку, а находятся вне ее — в микроскопических трещинках и пустошах, так называемых капиллярах, в воде, заполняющей эти капилляры, и оседают на их стенках.
Весьма различны и условия перемещения урана и радия в земной коре. Уран может перемещаться — мигрировать, как говорят геохимики, — только при разрушении кристаллической решетки, скажем, при растворении минерала, а радий может быть извлечен из породы без всякого нарушения целостности кристаллической решетки минерала. Например, он может быть выщелочен из тех капилляров, где он «прячется». Таким образом, миграцию урана определяют в основном законы растворимости, миграцию радия — законы адсорбции и диффузии.
Тонкий геохимический анализ дает в руки геохимика путеводную нить в поисках этих столь важных для современной техники элементов.
В ранних своих
Во время первого своего большого перелета Берлин — Москва в июле 1927 года Ферсман с огромным интересом наблюдал на всем протяжении от Ковно (Каунаса) до Витебска типичный ландшафт отступивших ледников, целую сеть озер без стока. Он явственно видел — не умозаключал, а просто видел собственными глазами! — следы ледниковых потоков, вынесших песчаные косы, на которых темными полосами вытянулись хвойные леса. Далее, к Смоленску и Москве, наблюдались террасы — тот своеобразный элемент поверхности Земли, который столь тесно связан со всей ее геологической историей последнего времени. Эти террасы по Двине и Днестру резко бросались в глаза. На них темнели стены Смоленского кремля.
Но еще более интересны были наблюдения с самолета над течением рек и речек наших равнин, которые столь прихотливо извиваются в Средней России, образуя извилины — меандры — и составляя систему стариц. С самолета можно прочитать всю их прошлую историю, которую рассказывают не только сами извилины, а и цвет их растительности. Она меняется в зависимости от старости и заиленности речного ложа и представляет взору наблюдателя всю гамму цветов от старого, уже затянувшегося русла до только что отделенной старицы.
«Ни на какой карте этих мелочей нельзя найти… а здесь они присутствуют в таком изобилии и такой громадной распространенности, — описывал Ферсман свои впечатления в ежемесячнике Ленинградского университета, — что нельзя не обратить внимания наших молодых геологов на эти явления микроблуждания рек и пожелать им с аэроплана изучать законы движения рек, речек и больших ручейков».
А смена почвенных ландшафтов! С самолета она вырисовывается нагляднее, чем в витринах кропотливо собранных образцов Почвенного музея.
В жизни ученого редко бывает так, что отдельные темы его научных работ, отдельные мысли, которые подчас неожиданно всплывают в его высказываниях и статьях, жили обособленной жизнью от главных его интересов. Если эта связь не ощущается явно, то при более глубоком знакомстве с его деятельностью она неизбежно обнаружится. Так, ферсмановское увлечение авиацией при ближайшем рассмотрении оказывается тесно связанным с практической направленностью его геохимических идей.
То же самое ощущение — огромного расширения кругозора геолога — сообщал Ферсману геохимический подход к изучению земных недр.
На специальную сессию Академии наук, обсуждавшую задачи научной помощи новостройкам Сибири, Ферсман прилетел из Кузнецка, где закладывались тогда основы всей Урало-Кузнецкой проблемы. Он весь находился под впечатлением нового строительства гигантов индустрии, их небывалых масштабов и темпов. Необычным было и его выступление на сессии. Он говорил:
— Когда в течение нескольких минут на трехмоторном самолете поднимаешься над землей на тысячеметровую высоту и перед тобой проходит вся грандиозная картина Южного и Среднего Урала, тогда начинаешь понимать, как трудна работа партии геологов, брошенной в эти громадные пространства на поверхности лесов и озер, расстилающихся вокруг на необъятных просторах Союза, и еще резче начинаешь понимать то громадное значение, которое должен иметь прогноз теоретической мысли, которая одна позволяет под этой поверхностью отыскать лежащие там богатства, проникнуть под ее покров «какими-то другими глазами, чем глаза простого геолога, глазами новых научных методов — методов геофизики и молодой геохимии…