Чтение онлайн

на главную - закладки

Жанры

Фейнмановские лекции по физике 1. Современная наука о природе, законы механики
Шрифт:

В этих рассуждениях кроется ключ к вычислению силы или напряженности поля, когда потенциальная энергия известна.

Пусть потенциальная энергия тела в точке (х, у, z) дана, а мы хотим узнать, какая сила действует на него в этой точке. Для этого нужно знать потенциал не только в этой точке, но и в соседних. Почему? Попробуем вычислить x–компоненту силы (если мы это сумеем сделать, то точно таким же способом мы вычислим и у–и z–компоненты, определив тем самым всю силу). Если б мы сдвинули тело на малое расстояние ?x, то работа, произведенная силой над телом, равнялась бы x–компоненте силы, умноженной на ?x (если ?x достаточно мало), и должна была бы быть равна изменению потенциальной энергии при переходе от одной точки к другой:

?W=-?U=Fx?x. (14.9)

Мы

просто применили формулу ?F•ds=-?U для очень

малых расстояний. Теперь разделим на ?x и обнаружим, что сила равна

Fx=-?u/?x. (14.10)

Конечно, это не совсем точно. На самом деле нам нужно перейти в (14.10) к пределу при ?x, стремящемся к нулю, потому что (14.10) точно соблюдается только для бесконечно малых ?x. Мы узнаем в правой части (14.10) производную U по х и хотим написать–dUldx. Но U зависит и от х, и от у, и от z, и для такого случая математики придумали другое обозначение, которое рассчитано на то, чтобы напоминать нам, что надо быть очень осторожным, дифференцируя такую функцию. Этот символ напоминает, что только х считается изменяющимся, а у и z – нет. Вместо d они просто пишут «6 навыворот», или д. (По–моему, когда начинаешь изучать дифференциальные исчисления, то вообще лучше работать с д, а не с d; d всегда хочется сократить, а вот на д как–то рука не поднимается!) Итак, они пишут dU/dx, а иногда в припадке строгости, желая быть очень бдительными, они ставят за дх скобку с маленькими у, z внизу (dU/dx)yz, что означает: «Продифференцируй U по х, считая у и z постоянными». Но мы чаще всего не будем отмечать, что осталось постоянным, из контекста это всегда можно понять. Но зато всегда будем писать д вместо d как предупреждение о том, что эта производная берется при постоянных значениях прочих переменных. Ее называют частной производной, т. е. производной, для вычисления которой меняют часть переменных, х.

Итак, мы обнаруживаем, что сила в направлении х равна минус частной производной U по х:

Fx=-дU/дx (14.11)

Точно так же и сила в направлении у получается дифференцированием U по у при постоянных х и z, а третья составляющая силы опять–таки есть производная по z при х и у постоянных:

В этом и состоит способ получать силу из потенциальной энергии. Поле получается из потенциала в точности так же:

Заметим, кстати, что существует и другое обозначение (впрочем, пока оно нам не понадобится). Так как С есть вектор с компонентами х, у, z, то символы д/дх, д/ду, d/dz, дающие х-, у-, z–компоненты поля, чем–то напоминают векторы. Математики изобрели знаменитый символ ?, или grad, называемый «градиентом»; это не величина, а оператор, он делает из скаляра вектор. У него есть три составляющие: x–компонента этого grad есть д/дх, y–компонента – д/ду, а z–компонента– d/dz, и мы можем позабавиться, переписав наши формулы в виде

Глядя на ?; мы мгновенно узнаем, что наши уравнения векторные; но на самом деле уравнение (14.14) означает в точности то же, что и (14.11) и (14.12); просто это другой способ записи. Не желая писать каждый раз три уравнения, мы пишем одно лишь ?U.

Еще один пример полей и потенциалов связан с электричеством. В этом случае сила, действующая на неподвижное тело, равна заряду, умноженному на поле: F = qЕ. (В x–составляющую силы входят, вообще говоря, и члены, которые зависят от магнитного поля. Но из уравнения (12.10) легко увидеть, что сила, действующая на частицу со стороны магнитных полей, всегда направлена поперек поля и поперек ее скорости. Благодаря этому свойству магнетизм не производит никакой работы над движущимся зарядом, потому что сила перпендикулярна перемещению. Значит, вычисляя кинетическую энергию в электрическом и магнитном полях, можно пренебречь вкладом магнитного поля, так как оно не изменяет кинетической энергии.) Положим, что имеется только электрическое поле. Тогда мы можем рассчитать энергию или произведенную работу точно таким же способом, как и для тяготения: вычислить величину ?, равную минус интегралу от Еds от произвольной фиксированной точки Р до точки, в которой вычисляется потенциал; тогда потенциальная энергия в электрическом поле равна просто произведению заряда на эту величину ?:

?(r) = -Eds,

U=q?.

В качестве примера рассмотрим две параллельные металлические пластины с поверхностным зарядом ?? (на единицу площади) каждая. Такая штука называется плоским конденсатором. Мы уж убедились раньше, что снаружи пластин сила равна нулю, а между ними существует постоянное электрическое поле. Оно направлено от плюса к минусу и равно ?/?0 (фиг. 14.5).

Фиг. 14.5. Поле между параллельными пластинами.

Мы хотим знать, какую работу надо совершить, чтобы перенести заряд от одной пластины к другой. Работа равна интегралу от (Сила.)•(ds). Его можно записать как произведение заряда на значение потенциала на пластине 1 минус та же величина на пластине 2:

W=?F•ds= q(?1– ?2).

Интеграл здесь легко вычислить, так как сила постоянна, и если обозначить толщину конденсатора d, то интеграл равен

Разница в потенциалах ??= ?d/? называется напряжением и ? измеряют в вольтах. Когда мы говорим, что пара пластин заряжена до определенного напряжения, мы хотим этим сказать, что разность электрических потенциалов двух пластин равна стольким–то вольтам. У конденсатора, сделанного из двух параллельных пластин с поверхностным зарядом ±?, напряжение (или разность потенциалов этой пары пластин) равно ?d/?.

Поделиться:
Популярные книги

Мы пришли к вам с миром!

Кожевников Павел
Вселенная S-T-I-K-S
Фантастика:
научная фантастика
альтернативная история
5.00
рейтинг книги
Мы пришли к вам с миром!

Не ангел хранитель

Рам Янка
Любовные романы:
современные любовные романы
6.60
рейтинг книги
Не ангел хранитель

Последняя Арена 6

Греков Сергей
6. Последняя Арена
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Последняя Арена 6

Газлайтер. Том 10

Володин Григорий
10. История Телепата
Фантастика:
боевая фантастика
5.00
рейтинг книги
Газлайтер. Том 10

Вечный. Книга V

Рокотов Алексей
5. Вечный
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга V

Целитель. Книга вторая

Первухин Андрей Евгеньевич
2. Целитель
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Целитель. Книга вторая

Венецианский купец

Распопов Дмитрий Викторович
1. Венецианский купец
Фантастика:
фэнтези
героическая фантастика
альтернативная история
7.31
рейтинг книги
Венецианский купец

Защитник

Астахов Евгений Евгеньевич
7. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Защитник

Всадники бедствия

Мантикор Артемис
8. Покоривший СТЕНУ
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Всадники бедствия

Его маленькая большая женщина

Резник Юлия
Любовные романы:
современные любовные романы
эро литература
8.78
рейтинг книги
Его маленькая большая женщина

Законы рода

Flow Ascold
1. Граф Берестьев
Фантастика:
фэнтези
боевая фантастика
аниме
5.00
рейтинг книги
Законы рода

Сердце Дракона. Том 20. Часть 1

Клеванский Кирилл Сергеевич
20. Сердце дракона
Фантастика:
фэнтези
боевая фантастика
городское фэнтези
5.00
рейтинг книги
Сердце Дракона. Том 20. Часть 1

Хозяйка дома в «Гиблых Пределах»

Нова Юлия
Любовные романы:
любовно-фантастические романы
5.75
рейтинг книги
Хозяйка дома в «Гиблых Пределах»

Дорогой Солнца. Книга вторая

Котов Сергей
2. Дорогой Солнца
Фантастика:
боевая фантастика
постапокалипсис
5.00
рейтинг книги
Дорогой Солнца. Книга вторая