Фейнмановские лекции по физике 1. Современная наука о природе, законы механики
Шрифт:
F3= F13+F2
то работа равна
Стало быть, вся работа равна сумме работ, произведенных против силы 1 и против силы 2, как если бы они действовали независимо. Продолжая рассуждать таким образом, мы увидим, что полная работа, которую необходимо выполнить, чтобы собрать данную конфигурацию тел, в точности равна значению (13.14) для потенциальной энергии. Именно из–за того, что тяготение подчиняется принципу наложения сил, можно потенциальную энергию представить в виде суммы по всем парам частиц.
§ 4. Поле тяготения больших тел
Теперь
Но мы видим, что
Значит,
2rdr=-2Rdx,
или
Поэтому
и получается
Стало быть, для тонкого слоя потенциальная энергия массы m', внешней по отношению к слою, такова, как если бы масса слоя собралась в его центре. Землю же можно представить в виде ряда таких слоев, и притяжение каждого из слоев зависит только от его массы; сложив их, получим всю массу планеты; значит, и вся Земля действует так, словно все ее вещество находится в ее центре!
Но посмотрим, что произойдет, если точка Р окажется внутри слоя. Проделывая те же расчеты вплоть до интегрирования, мы получим разность двух значений r, но уже в другой форме: (a+R)-(а–R)=2R (двойное расстояние от Р до центра). Другими словами, теперь W становится равной W=-Gmm'/a, что не зависит от R, т. е. точка Р всюду внутри сферы обладает одной и той же энергией тяготения. А значит, на нее не действует никакая сила, и не нужно никакой работы, чтобы двигать ее внутри. Когда потенциальная энергия тела всюду, в любой точке внутри сферы, одинакова, то на тело не действует никакая сила. Внутри сферы тело не испытывает действия сил, сила действует только снаружи.
*Энергия в единицах табл. 9.2 есть ?( v 2 x + v 2 y )-1/ r
Глава 14
РАБОТА И ПОТЕНЦИАЛЬНАЯ ЭНЕРГИЯ (II)
§1. Работа
§2. Движение при наложенных связях
§3. Консервативные силы
§4. Неконсервативные силы
§5. Потенциалы и поля
§ 1. Работа
В предыдущей главе мы ввели много новых понятий и идей, играющих важную роль в физике. Идеи эти столь важны, что, пожалуй, стоит посвятить целую главу внимательному ознакомлению с ними. Мы не будем здесь повторять «доказательства» и красивые приемы, позволяющие просто получать важные результаты, а вместо этого сосредоточим наше внимание на обсуждении самих идей.
Штудируя любой вопрос технического характера, для понимания которого нужна математика, мы всегда сталкиваемся с необходимостью понять и отложить в памяти массу фактов и идей, объединенных определенными связями, Существование этих связей можно «доказать или «показать». Ничего не стоит спутать само доказательство с тем соотношением, которое оно устанавливает. Конечно, куда важнее выучить и запомнить не доказательство, а само соотношение. Тогда уж в любом случае мы сможем сказать: «Легко показать, что…» то–то и то–то верно, а то и действительно показать это, Приводимые доказательства почти всегда состряпаны, сфабрикованы с таким расчетом чтобы, во–первых, их легко было воспроизвести мелом на доске или пером на бумаге и, во–вторых, чтобы они выглядели поглаже. В итоге доказательство выглядит обманчиво просто, хотя, быть может, на самом деле автор много часов искал разные пути расчета, пока не нашел самый изящный – тот, который приводит к результату за кратчайшее время! Глядя на вывод формулы, надо вспоминать не этот вывод, а скорее сам факт, что то–то и то–то можно доказать. Конечно, если доказательство требует особых математических выкладок или «трюков», никогда прежде не виденных, то надо обратить внимание… впрочем, не на сами трюки, а на их идею.
Ни одно из доказательств, приведенных в этом курсе, автор не запомнил с тех времен, когда сам учил физику. Наоборот, он просто вспоминает, что то–то является верным, и, пытаясь пояснить, как это доказывается, сам придумывает доказательство в тот момент, когда оно необходимо. И всякий, кто действительно изучил предмет, должен быть в состоянии поступать так же, не запоминая доказательств. Вот почему в этой главе мы будем избегать вывода различных положений, сделанных ранее, а просто будем подводить итоги.
Первая идея, которую нужно будет переварить, – это то, что работа производится силой. Физический термин «работа» ничего общего не имеет с общежитейским ее смыслом…
Физическая работа выражается в виде ?F•ds, или «контурный интеграл от F по ds «скалярно»; последнее означает, что если сила направлена, скажем, в одну сторону, а тело, на которое сила действует, перемещается в другую сторону, то работу совершает только составляющая силы в направлении перемещения. Если бы, например, сила была постоянна, а смещение произошло на конечный отрезок ?s, то работа, выполненная постоянной силой на этом пути, была бы равна произведению составляющей силы вдоль ?s на ?s. Правило гласит: «работа есть сила на путь», но подразумевается лишь составляющая силы в направлении перемещения, умноженная на ?s, или, что одно и то же, составляющая перемещения в направлении силы, умноженная на F.
Очевидно, что сила, направленная под прямым углом к перемещению, никакой работы не произведет.
Если, далее, вектор смещения ?s разложить на составляющие, т. е. если истинное смещение есть ?s и мы хотим считать, что оно состоит из составляющих смещения ?x; в направлении х, ?y в направлении у и ?z в направлении z, то вся произведенная работа перемещения тела из одного места в другое может быть рассчитана по трем частям: отдельно работа смещения вдоль х, вдоль у и вдоль z. Работа перемещения вдоль х требует знания только соответствующей составляющей силы Fxи т. д., так что работа равна Fx?x+Fy?y+Fz?z. Когда сила не постоянна, а движение запутанное, криволинейное, то нужно разбить путь на множество малых ?s, сложить работы переноса тела вдоль каждого ?s и перейти к пределу при ?s, стремящемся к нулю. В этом смысл понятия «контурный интеграл».