Чтение онлайн

на главную

Жанры

Фейнмановские лекции по физике. 6. Электродинамика
Шрифт:

(15.25)

В простых задачах векторным потенциалом часто бывает пользоваться труднее, и вот по какой причине. Предположим, нас интересует магнитное поле В в одной только точке, а задача обладает какой-то красивой симметрией. Скажем, нам нужно знать поле в точке на оси кольцевого тока. Вследствие симмет­рии интеграл в (15.25) легко возьмется и вы сразу получите В. Если бы, однако, мы начали с А, то пришлось бы вычислять В из производных А, а для этого надо было бы знать А во всех точках по соседству с той,которая нас интересует. Большая же часть их не лежит на оси симметрии, интеграл для А услож­няется. В задаче с кольцом, например, пришлось бы иметь дело с эллиптическими интегралами. В подобных задачах А, разу­меется, не приносит большой пользы. Во многих сложных задачах, бесспорно, легче работать с А, но в общем трудно было бы доказывать, что эти технические

облегчения стоят того, чтобы начать изучать еще одно векторное поле.

Мы ввели А потому, что оно действительно имеет большое физическое значение. Оно не просто связано с энергиями токов (в чем мы убедились в последнем параграфе), оно — «реальное» физическое поле в том смысле, о котором мы говорили выше. В классической механике силу, действующую на частицу, очевидно, можно записать в виде

F = q(E+vXB), (15.26)

так что, как только заданы силы, движение оказывается пол­ностью определенным. В любой области, где В = 0, хотя бы А и не было равно нулю (например, вне соленоида), влияние А ни в чем не сказывается. Поэтому долгое время считалось, что А — не «реальное» поле. Оказывается, однако, что в квантовой механике существуют явления, свидетельствующие о том, что поле А на самом деле вполне «реальное» поле, в том смысле, в каком мы определили это слово. В следующем параграфе мы покажем, что все это значит.

§ 5. Векторный потенциал и квантовая механика

Когда мы от классической механики переходим к квантовой, то наши представления о важности тех или иных понятий во многом меняются. (Кое-какие из этих понятий мы уже рассмат­ривали раньше.) В частности, постепенно сходит на нет поня­тие силы, а понятия энергии и импульса приобретают перво­степенную важность. Вместо движения частиц, как вы пом­ните, речь теперь идет уже об амплитудах вероятностей, кото­рые меняются в пространстве и времени. В эти амплитуды входят длины волн, связанные с импульсами, и частоты, связывае­мые с энергиями. Импульсы и энергии определяют собой фазы волновых функций и по этой-то причине они важны для квантовой механики.

Фиг. 15.5. Интерференционный опыт с электронами.

Вместо силы речь теперь идет о том, каким образом взаимодействие меняет длину волны. Представление о силе становится уже второстепенным, если вообще о нем еще стоит говорить. Даже когда, к примеру, упоминают о ядерных силах, то на самом деле, как правило, работают все же с энер­гиями взаимодействия двух нуклонов, а не с силой их взаимо­действия. Никому не приходит в голову дифференцировать энергию, чтобы посмотреть, какова сила. В этом параграфе мы хотим рассказать, как возникают в квантовой механике век­торный и скалярный потенциалы. Оказывается, что именно из-за того, что в квантовой механике главную роль играют импульс и энергия, самый прямой путь введения в квантовое описание электромагнитных эффектов — сделать это с по­мощью А и j.

Надо сперва слегка напомнить, как действует квантовая механика. Мы снова вернемся к описанному в вып. 3, гл. 37, воображаемому опыту, в котором электроны испытывали дифрак­цию на двух щелях. На фиг. 15.5 показано то же устройство. Электроны (все они обладают примерно одинаковой энергией) покидают источник и движутся к стенке с двумя узкими щелями. За стенкой находится «защитный» вал — поглотитель с подвиж­ным детектором. Этот детектор предназначен для измерения частоты I, с которой электроны попадают в небольшой участок поглотителя на расстоянии х от оси симметрии. Частота эта пропорциональна вероятности того, что отдельный электрон, вылетевший из источника, достигнет этого участка «вала». Вероятность обладает распределением сложного вида (оно показано на рисунке), которое объясняется интерференцией двух амплитуд, по одной от каждой щели. Интерференция двух амплитуд зависит от их разности фаз. Иными словами, когда амплитуды равны С1еiф1и С2еiф2, разность фаз d=Ф1– Ф2 определяет интерференционную картину [см. вып. 3, гл. 29, уравнение (29.12)]. Если расстояние от щелей до экрана равно L, а разность длин путей электронов, проходящих через две щели, равна а (как показано на фигуре), то разность фаз двух волн дается отношением

(15.27)

Как обычно, мы полагаем l= l/2p, где l — длина волны, отвечающая пространственному изменению амплитуды вероят­ности. Для простоты рассмотрим лишь те значения х, кото­рые много меньше L; тогда можно будет принять

и

(15.28)

Когда х равно нулю, то и d равно нулю; волны находятся в фазе, а вероятность имеет максимум. Когда d равно п, волны оказываются в противофазе, интерферируя деструктивно, и вероятность достигает минимума. Так электронная интенсив­ность получает волнообразный вид.

Теперь мы хотим сформулировать тот закон, которым в кван­товой механике заменяется закон силы F=qvXВ. Этот закон будет определять собой поведение квантовомеханических ча­стиц в электромагнитном поле. Раз все происходящее опреде­ляется амплитудами, то закон должен будет объяснить, как сказывается на амплитудах влияние магнитного поля; с уско­рениями же частиц мы больше никакого дела иметь не будем. Закон этот состоит в следующем: фазу, с какой амплитуда до­стигает детектора, двигаясь по какой-то траектории, присут­ствие магнитного поля меняет на величину, равную интегралу от векторного потенциала вдоль этой траектории, умноженному на отношение заряда частицы к постоянной Планка. То есть

Если бы магнитного поля не было, то наблюдалась бы какая-то определенная фаза прибытия. Если же где-то появляется маг­нитное поле, то фаза прибытия возрастает на величину инте­грала в (15.29).

Хотя для наших теперешних рассуждений в этом нет необ­ходимости, заметим все же, что влияние электростатического поля тоже выражается в изменении фазы, равном интегралу по времени от скалярного потенциала j со знаком минус:

Эти два выражения справедливы лишь для статических полей, но, объединив их, мы получим правильный результат для любого, статического или динамического, электромаг­нитного поля. Именно этот закон и заменяет собой формулу F= q(E+vXВ). Мы сейчас, однако, будем говорить только о статическом магнитном поле.

Положим, что опыт с двумя щелями проводится в магнитном поле. Мы хотим узнать, с какой фазой достигают экрана две волны, пути которых пролегают через две разные щели. Их интерференция определяет то место, где окажется максимум вероятности. Фазу волны, бегущей по траектории (1), мы назо­вем Ф1; а через Ф1 = 0) обозначим фазу, когда магнитного поля нет. Тогда после включения поля фаза достигает величины

(15.30)

Аналогично, фаза для траектории (2) равна

(15.31)

Интерференция волн в детекторе зависит от разности фаз

Разность фаз в отсутствие поля мы обозначим d = 0); это та самая разность, которую мы подсчитали в уравнении (15.28). Кроме того, мы замечаем, что из двух интегралов можно сделать один, идущий вперед по пути (1), а назад — по пути (2); этот замкнутый путь будет обозначаться (1—2). Так что получается

Поделиться:
Популярные книги

Неудержимый. Книга XVIII

Боярский Андрей
18. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XVIII

Я тебя верну

Вечная Ольга
2. Сага о подсолнухах
Любовные романы:
современные любовные романы
эро литература
5.50
рейтинг книги
Я тебя верну

Мастер 2

Чащин Валерий
2. Мастер
Фантастика:
фэнтези
городское фэнтези
попаданцы
технофэнтези
4.50
рейтинг книги
Мастер 2

Вперед в прошлое 6

Ратманов Денис
6. Вперед в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 6

Долг

Кораблев Родион
7. Другая сторона
Фантастика:
боевая фантастика
5.56
рейтинг книги
Долг

Барон устанавливает правила

Ренгач Евгений
6. Закон сильного
Старинная литература:
прочая старинная литература
5.00
рейтинг книги
Барон устанавливает правила

Толян и его команда

Иванов Дмитрий
6. Девяностые
Фантастика:
попаданцы
альтернативная история
7.17
рейтинг книги
Толян и его команда

На границе империй. Том 10. Часть 2

INDIGO
Вселенная EVE Online
Фантастика:
космическая фантастика
5.00
рейтинг книги
На границе империй. Том 10. Часть 2

Новый Рал 5

Северный Лис
5. Рал!
Фантастика:
попаданцы
5.00
рейтинг книги
Новый Рал 5

Опер. Девочка на спор

Бигси Анна
5. Опасная работа
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Опер. Девочка на спор

Идеальный мир для Лекаря 3

Сапфир Олег
3. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 3

Курсант: Назад в СССР 7

Дамиров Рафаэль
7. Курсант
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Курсант: Назад в СССР 7

Не ангел хранитель

Рам Янка
Любовные романы:
современные любовные романы
6.60
рейтинг книги
Не ангел хранитель

Назад в СССР 5

Дамиров Рафаэль
5. Курсант
Фантастика:
попаданцы
альтернативная история
6.64
рейтинг книги
Назад в СССР 5