Чтение онлайн

на главную - закладки

Жанры

Фейнмановские лекции по физике. 9. Квантовая механика II
Шрифт:

§ 4. Поляризованный свет

Прежде всего необходимо проверить одну идею. В гл. 9, § 4 (вып. 8), мы показали, что когда состояние правополяризованного по кругу света наблюдается из системы, повернутой на угол j вокруг оси z, то оно оказывается умноженным на еij. Не означает ли это, что фотоны правополяризованного по кругу света несут момент количества движения вдоль оси z, равный единице?

Да, так оно и есть. Это означает еще, что когда у нас имеется пучок света, содержащий множество фотонов, поголовно оди­наково поляризованных по кругу (как бывает в классических пучках), то он будет нести с собой какой-то момент количества движения. Если полная энергия, уносимая пучком за какое-то время, есть W, то в нем имеется N=W/hw фотонов. Каждый несет по моменту h, так что полный момент количества движения равен

Jz=Nh=W/w. (15.30)

Можно

ли и в классике доказать, что свет, правополяризованный по кругу, несет с собой энергию и момент количества движения в пропорции W к w? Ведь если все правильно, это было бы классическое утверждение — случай, когда можно перейти от квантов к классике. Надо проверить, подтверждается ли это классической физикой. Тогда станет ясно, имеем ли мы право назвать т моментом количества движения. Припомним, чем в классическом смысле является правополяризованный свет. Он описывается электрическим полем с колеблющейся x– компонентой и колеблющейся y– компонентой, сдвинутыми по фазе на 90°, так что суммарный вектор x электриче­ского поля бежит по кругу (фиг. 15.5, а).

Фиг. I5.5. Электрическое поле xв поляризованной по кругу све­товой волне (а) и вращение элек­трона, приводимого в движение поляризованным по кругу светом (б). .

Теперь положим, что мы осветили таким светом стенку, способную поглотить его (или по крайней мере часть его), и рассмотрим один из атомов стенки, опираясь на классические представления. Мы часто представляли движение электрона в атоме в виде гармонического осциллятора, который приводится в дейст­вие внешним электрическим полем. Предположим, что атом изотропен, так что с равным успехом колеблется как в направлении х, так и в направлении у. Далее, у све­та, поляризованного по кру­гу, смещения по х и по у одинаковы, хотя и отстают друг от друга на 90°. В итоге электрон будет двигаться по кругу (фиг. 15.5, б). Он сместит­ся из положения равновесия в начале координат на величину г и начнет ходить по кругу, как-то отставая по фазе от вектора x. Связь между x и r может быть такая, как пока­зано на фиг. 15.5, б. Электрическое поле с течением времени поворачивается, но с такой же частотой поворачивается и сме­щение, так что относительная ориентация остается той же. Посмотрим теперь, какая работа производится над электроном. Скорость, с какой электрону подается энергия, равна его ско­рости v, умноженной на компоненту xt, параллельную этой

скорости:

Но вы не можете не заметить, что у электрона в это время непре­рывно увеличивается и момент количества движения, потому что он все время испытывает действие момента, вращающего его вок­руг начала координат. Вращательный момент равен xtr, и он обязан равняться скорости изменения момента количества движения dJz/dt:

Вспоминая, что v=wr, имеем

Следовательно, если проинтегрировать поглощаемый пол­ный момент количества движения, то он окажется пропорцио­нальным полной энергии, с коэффициентом пропорциональности 1/w, что согласуется с (15.30). Свет действительно несет с собой момент количества движения — одну единицу (Xh), когда он правополяризован по кругу вдоль оси z, и минус одну единицу, когда левополяризован.

Теперь зададим следующий вопрос: если свет линейно поля­ризован в направлении х, то чему равен момент количества движения? Свет, поляризованный в направлении х, может быть представлен суперпозицией право- и левополяризованного света. Поэтому имеется некоторая амплитуда того, что момент количества движения равен +h, и некоторая амплитуда того, что момент равен -h, так что определенного момента количества движения у него нет, а есть амплитуда появиться с +h, и такая же появиться с -h. Интерференция этих двух амплитуд создает линейную поляризацию, обладающую равной вероятностью оказаться с плюс или с минус одной единичкой момента количе­ства движения. Макроскопические измерения, проведенные над пучком линейно поляризованного света, покажут, что он несет нулевой момент количества движения, потому что среди боль­шого числа фотонов, несущих противоположные количества момента, окажется поровну правых и левых, и средний момент количества движения будет равен нулю. И в классической тео­рии вы не обнаружите никакого момента количества движения, разве что где-то окажутся следы какой-то круговой поляриза­ции.

Мы говорили, что частица со спином 1 может иметь три зна­чения Jz:+1, 0, -1 (те три состояния, которые нам встрети­лись в опыте Штерна — Герлаха).

Но у света свой нрав: у него только два состояния. Состоя­ния с нулем у него нет. Эта странная потеря связана с тем, что свет не может стоять на месте. У покоящейся частицы со спином j имеются 2j+1 возможных состояния со значениями jz, идущими с шагом 1 от -j до +j. Но оказывается, что если что-то имеет спин j, а масса этого чего-то равна нулю, то у него могут быть только состояния с компонентами +j и -j вдоль направ­ления движения. Например, у света не три состояния, а два, хотя фотон — это объект со спином 1. Как же это согласуется с нашими прежними доказательствами, опирающимися на то, что происходит при поворотах в пространстве, доказательства­ми того, что для частиц со спином 1 необходима тройка состоя­ний? Покоящуюся частицу можно поворачивать вокруг любой оси, не меняя состояния ее момента. Частицы же с нулевой массой покоя (например, фотоны или нейтрино) не могут на­ходиться в покое; только повороты вокруг оси, указывающей направление движения, не изменят состояния момента. А пово­ротов вокруг одной оси не хватает на то, чтобы доказать, что нужны обязательно три состояния, если дано, что одно из них при поворотах на угол j меняется, как еij.

Еще одно замечание в сторону. Вообще-то частицы с нулевой массой покоя могут обойтись только одним из двух спиновых со­стояний (+j, -j) относительно линии движения. У нейтрино (частиц со спином 1/2) в природе существуют только состояния с компонентой момента количества движения -h/2, обратной направлению движения (а у антинейтрино — только с компо­нентой по направлению движения, +h/2). Когда же система обладает симметрией инверсии (так что четность сохраняется), требуются уже обе компоненты +j и -j. Примером является свет.

§ 5. Распад L 0

Теперь приведем пример того, как теорема о сохранении мо­мента количества движения применяется в чисто квантовофизических задачах. Рассмотрим распад лямбда-частицы (L0), кото­рая расщепляется на протон и p– мезон посредством слабого взаимодействия:

Пусть нам известно, что спин у пиона равен нулю, у протона — половине, а у L0 тоже половине. Мы хотели бы решить следую­щую задачу: положим, что L0 рождена таким образом, что ока­залась полностью поляризованной; это значит, что ее спин направлен, скажем, вверх по отношению к подходящим образом выбранной оси z (фиг. 15.6, а).

Фиг. 15.6. L 0 – частица со спином, направленным вверх, распадается на протон и пион (в системе центра масс).

Какова вероятность того, что протон вылетит под углом q?

Вопрос заключается в том, с какой вероятностью она распадется так, что протон вылетит под углом q к оси z (фиг. 15.6, б). Иными словами, каково угло­вое распределение распадов? Мы будем рассматривать распад в системе координат, где L0 покоится, измеряя углы в системе покоя L0; если нужно, их всегда можно перевести в другую

систему.

Начнем с рассмотрения того частного случая, когда протон испускается в небольшой телесный угол DW близ оси z (фиг. 15.7).

Фиг. 15.7. Две возможности распада частицы L0со спином, направленным вверх, если про­тон движется по оси +z.

Момент сохраняется только при схеме распада (б).

До распада спин L0 был направлен вверх (фиг. 15.7, а). Через мгновение (по причинам, по сей день неизвестным, известно только, что они связаны со слабыми распадами) L0 взрывается, образуя протон и пион. Пусть протон летит вверх по оси + z. Тогда пиону из-за сохранения импульса придется направиться вниз. Поскольку протон — это частица со спином 1/2, то его спин обязан быть направлен либо вверх, либо вниз,— в принципе имеются две возможности, показанные на фиг. 15.7, б и в. Со­хранение момента количества движения требует, однако, чтобы спин протона был направлен только вверх. Легче всего понять это из следующих рассуждений. Частица, движущаяся вдоль оси z, никак не может приобрести за счет своего движения момента вокруг этой оси, поэтому в Jz могут дать вклад только спины. Спиновый момент количества движения вокруг оси z до распада был равен +h/2; значит, и после он будет равен + h/2. Можно сказать, что из-за того, что у пиона нет спина, спин протона должен смотреть вверх.

Поделиться:
Популярные книги

Идеальный мир для Лекаря 16

Сапфир Олег
16. Лекарь
Фантастика:
боевая фантастика
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 16

Месть бывшему. Замуж за босса

Россиус Анна
3. Власть. Страсть. Любовь
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Месть бывшему. Замуж за босса

Истинная поневоле, или Сирота в Академии Драконов

Найт Алекс
3. Академия Драконов, или Девушки с секретом
Любовные романы:
любовно-фантастические романы
6.37
рейтинг книги
Истинная поневоле, или Сирота в Академии Драконов

Курсант: назад в СССР 9

Дамиров Рафаэль
9. Курсант
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Курсант: назад в СССР 9

Вечная Война. Книга VI

Винокуров Юрий
6. Вечная Война
Фантастика:
боевая фантастика
рпг
7.24
рейтинг книги
Вечная Война. Книга VI

Черный Маг Императора 8

Герда Александр
8. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 8

Я – Орк. Том 2

Лисицин Евгений
2. Я — Орк
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я – Орк. Том 2

Измена. Ребёнок от бывшего мужа

Стар Дана
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Ребёнок от бывшего мужа

Отверженный. Дилогия

Опсокополос Алексис
Отверженный
Фантастика:
фэнтези
7.51
рейтинг книги
Отверженный. Дилогия

Моя (не) на одну ночь. Бесконтрактная любовь

Тоцка Тала
4. Шикарные Аверины
Любовные романы:
современные любовные романы
7.70
рейтинг книги
Моя (не) на одну ночь. Бесконтрактная любовь

Чиновникъ Особых поручений

Кулаков Алексей Иванович
6. Александр Агренев
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Чиновникъ Особых поручений

Кодекс Охотника. Книга VII

Винокуров Юрий
7. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
4.75
рейтинг книги
Кодекс Охотника. Книга VII

Протокол "Наследник"

Лисина Александра
1. Гибрид
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Протокол Наследник

Истребители. Трилогия

Поселягин Владимир Геннадьевич
Фантастика:
альтернативная история
7.30
рейтинг книги
Истребители. Трилогия