Фейнмановские лекции по физике. 9. Квантовая механика II
Шрифт:
Легко также понять, что если имеется кусок металла в сверхпроводящем состоянии и вы включите не очень сильное магнитное поле (что будет, когда оно сильное, мы обойдем молчанием), то оно не сможет проникнуть в металл. Если бы в момент создания магнитного поля хоть какая-то его часть возросла внутри металла, то в нем появилась бы скорость изменения потока, а в результате и электрическое поле, которое в свою очередь немедленно вызвало бы электрический ток, который, по закону Ленца, был бы направлен на уменьшение потока. А раз все электроны будут двигаться совместно, то бесконечно малое электрическое поле уже вызовет достаточный ток, чтобы полностью воспротивиться наложению любого магнитного поля. Значит, если вы включите поле после того как охладили металл до сверхпроводящего состояния, внутрь оно допущено ни за что не будет.
Еще интереснее другое связанное с этим явление, экспериментально обнаруженное Мейсснером. Если имеется кусок металла при высокой температуре (т. е. обычный проводник) и в нем вы создали магнитное поле, а затем
Причину этого можно понять из уравнений, и сейчас я объясню как. Пусть у нас имеется сплошной кусок сверхпроводящего материала (без отверстий). Тогда в любом установившемся положении дивергенция тока должна быть равна нулю, потому что ему некуда течь. Удобно будет выбрать дивергенцию А равной нулю. (Конечно, полагалось бы объяснить, отчего принятие этого соглашения не означает потери общности, но я не хочу тратить на это время.) Если взять дивергенцию от уравнения (19.18), то в итоге окажется, что лапласиан от q должен быть равен нулю. Но погодите, а как же с вариацией r? Я забыл упомянуть об одном важном пункте. В металле существует фон положительных зарядов (из-за наличия атомных ионов решетки). Если плотность заряда r однородна, то не будет ни остаточного заряда, ни электрического поля. Если бы в каком-то месте электроны и скопились, то их заряд не был бы нейтрализован и возникло бы сильнейшее отталкивание, которое растолкало бы электроны по всему металлу. Значит, в обычных обстоятельствах плотность электронного заряда в сверхпроводниках почти идеально однородна, и я вправе считать r постоянным. Далее, единственная возможность, чтобы С2q было равно нулю всюду внутри сплошного куска металла,— это постоянство q. А это означает, что в J не входит член с р– импульсом. Согласно выражению (19.18), ток пропорционален r, умноженному на А. Значит в куске сверхпроводящего материала ток с необходимостью будет пропорционален вектор-потенциалу
Знаки r и q одинаковы (отрицательны), и поскольку r — величина постоянная, то я могу положить rq/m =-(некоторая постоянная). Тогда
J=-(некоторая постоянная)А. (19.21)
Это уравнение впервые предложили братья Лондон, чтобы объяснить экспериментальные наблюдения над сверхпроводимостью, задолго до того, как люди уяснили себе квантовомеханическое происхождение эффекта.
Мы теперь можем подставить (19.20) в уравнения электромагнетизма и определить поля. Векторный потенциал связан с плотностью тока уравнением
Если вместо J я подставлю (19.21), то получу
где l2—просто новая постоянная
Теперь можно попробовать решить это уравнение относительно А и детальнее посмотреть, что там происходит. Например, в одномерном случае у (19.23) имеются экспоненциальные решения вида е– lxи е+lх. Эти решения означают, что векторный потенциал обязан экспоненциально убывать по мере удаления от поверхности внутрь образца. (Возрастать он не может — будет взрыв.) Если кусок металла очень велик по сравнению с 1/l, то поле проникнет внутрь только в тонкий слой у поверхности толщиной около 1/l. Все остальное место внутри проводника будет свободно от поля, как показано на фиг. 19.3.
Фиг. 19.3. Сверхпроводящий цилиндр в магнитном поле (а) и магнитное поле В как функция от r (б).
Этим и объясняется явление Мейсснера.
Какова же эта «глубина проникновения» 1/l? Вы помните, что r0— «электромагнитный радиус» электрона (2,8·10– 13см)—выражается формулой
Вы помните также, что q вдвое больше заряда электрона, так что
Записав r в виде qeN, где N — число электронов в кубическом сантиметре, мы получим
У такого металла, как свинец, на каждый кубический сантиметр приходится 3·1022 атомов, и если каждый атом снабдит нас одним электроном проводимости, то 1/l будет порядка 2·10– 5 см . Это дает вам порядок величины эффекта.
§ 7. Квантование потока
Уравнение Лондонов (19.21) было предложено, чтобы объяснить наблюдавшиеся при сверхпроводимости явления, включая эффект Мейсснера. Однако в последнее время прозвучали и более поразительные предсказания. Одно из предсказаний Лондонов было таким своеобразным, что никто даже не обратил на него особого внимания. Об этом я и расскажу. На сей раз возьмем сверхпроводящее кольцо, толщина которого по сравнению с 1/l велика, и посмотрим, что случится, если мы сперва наложим на кольцо магнитное поле, затем охладим кольцо до сверхпроводящего состояния, а потом уберем первоначальный источник поля В. Последовательность этих событий изображена на фиг. 19.4.
Фиг. 19,4. Кольцо в магнитном поле.
а — в нормальном, состоянии; б — в сверхпроводящем состоянии; в — после того, как внешнее поле убрали.
В нормальном состоянии (фиг. 19.4,а) в теле кольца имеется магнитное поле. Когда кольцо становится сверхпроводящим, поле (как мы уже знаем) выталкивается из вещества кольца. Но тогда, как показано на фиг. 19.4,б, останется некоторый поток поля сквозь отверстие кольца. Если теперь убрать внешнее поле, то те линии поля, которые шли через отверстие, будут «заморожены» (фиг. 19.4,в). Поток Ф через центр сойти на нет не может, потому что дФ/дt должно быть все время равно контурному интегралу от Е вдоль кольца, а Е внутри сверхпроводника равно нулю. И вот, когда мы убираем внешнее поле, то по кольцу начинает течь сверхпроводящий ток, цель которого — сохранить поток через кольцо неизменным. (Это старая идея о вихревых токах, только с нулевым сопротивлением.) Но все эти токи будут течь только у самой поверхности (на глубине не более 1/l), что следует из такого же анализа, как и проделанный для сплошного куска. Эти токи в состоянии сделать так, чтобы магнитное поле не попадало внутрь кольца, но зато все время держалось вокруг него.
Но здесь имеется существенное различие, и наши уравнения предсказывают поразительный эффект. Рассуждение о том, что фаза q в сплошном куске должна быть постоянной, к кольцу неприменимо; в этом вам помогут убедиться следующие рассуждения.
Далеко в глубине тела кольца плотность тока J равна нулю; значит, (19.18) означает, что
Теперь посмотрим, что получится, если мы возьмем контурный интеграл от А по кривой Г, которая проходит по самому центру поперечного сечения кольца, нигде не подходя близко к поверхности (фиг. 19.5).
Фиг. 19.5. Кривая Г внутри сверхпроводникового кольца.
Из (19.26)
Вы знаете, что контурный интеграл от А по любой петле равен потоку В через
петлю
Стало быть, уравнение (19.27) превращается в
Криволинейный интеграл от одной точки до другой (скажем, от точки 1 до точки 2) от градиента равен разности значений функции в этих двух точках: