Фейнмановские лекции по физике. 9. Квантовая механика II
Шрифт:
Если начать сближать точки 1 и 2, чтобы петля стала замкнутой, то на первый взгляд могло бы показаться, что q1 станет равно q2, так что интеграл в (19.28) обратится в нуль. Так оно и было бы для замкнутых петель в односвязном куске сверхпроводника, но для кольцеобразного куска это не обязательно. Единственное физическое требование, которое мы вправе предъявить, это чтобы в каждой точке волновал функция могла принимать только одно значение. Что бы ни делала фаза q, когда вы движетесь по кольцу, но когда вы возвращаетесь к начальной точке, фаза q обязана обеспечить вам прежнее значение волновой функции
Захваченный поток всегда обязан быть кратным числу 2ph/q! Если бы кольцо было классическим объектом с идеальной (т. е. бесконечной) проводимостью, то можно было бы подумать, что в кольце обязан остаться весь проходивший через него поток, какой бы величины он ни был, т. е. можно заморозить любое количество потока. Но квантовомеханическая теория сверхпроводимости утверждает, что поток может быть либо нулем, либо 2ph/q, либо 4ph/q, либо 6ph/q и т. д., но только не промежуточным числом! Он обязан быть кратным фундаментальной квантовомеханической константе.
Лондон предсказывал, что поток, захватываемый сверхпроводящим кольцом, окажется квантованным и допустимая величина потока будет дана уравнением (19.29), где q=qe— заряду электрона. Согласно Лондону, фундаментальная единица потока должна быть равна 2ph/qе, т. е. около 4·10– 7гс·см2. Чтобы представить себе эту величину, вообразите тонкий цилиндрик толщиной в одну десятую долю миллиметра; магнитное поле внутри него, если он содержит такую величину потока, составит около одного процента магнитного поля Земли. С помощью чувствительных магнитных измерений такой поток можно зарегистрировать.
В 1961 г. Дивер и Фейрбэнк из Станфордского университета предприняли поиски такого квантованного потока и нашли его; примерно в то же время это проделали Долл и Набауэр в Германии.
В опыте Дивера и Фейрбэнка сверхпроводящий цилиндрик был изготовлен электроосаждением тонкого слоя олова на кусочке медной проволоки диаметром 1,3·10– 3 см (длиной 1 см). Ниже 3,8° К олово становится сверхпроводящим, а медь остается нормальным металлом. Проволока была помещена в небольшое регулируемое магнитное поле и температура снижалась до тех пор, пока олово не стало сверхпроводником. Затем убрали внешний источник поля. Вы понимаете, что по закону Ленца это вызвало появление тока, стремившегося погасить эффект убывания потока внутри цилиндра. Цилиндрик приобрел магнитный момент, пропорциональный потоку внутри него. Этот магнитный момент измеряли, для чего водили проволочкой вверх и вниз (как иглой в швейной машинке, но со скоростью 100 раз в секунду) внутри пары маленьких катушечек, помещенных у концов оловянного цилиндрика. Мерой магнитного момента было наводимое в катушках напряжение.
Дивер и Фейрбэнк, проделав свой опыт, обнаружили, что поток действительно квантуется, но фундаментальная единица равна половине той, которую предсказал Лондон. Тот же результат получили Долл и Набауэр. Сперва это выглядело очень таинственно, но теперь стало ясно, отчего так вышло. Согласно теории сверхпроводимости Бардина, Купера и Шриффера, то q, которое стоит в (19.29), это заряд пары электронов, т. е. равно 2qe. Фундаментальная единица потока равна
т. е. равна половине того, что было предсказано Лондоном. Теперь все сходится, и измерения свидетельствуют о существовании предсказанного чисто квантовомеханического, но крупномасштабного явления.
§ 8. Динамика сверхпроводимости
Эффект Мейсснера и квантование потока подтверждают наши общие представления. Для полноты стоит еще продемонстрировать, как с этой точки зрения выглядели бы полные уравнения сверхпроводящей жидкости,— получается довольно интересно. До сих пор я подставлял выражение для yтолько в уравнения плотности заряда и тока. Но если я их подставлю в полное уравнение Шредингера, то получу уравнения для r и q. Интересно поглядеть, что из этого выйдет, потому что перед нами сейчас «жидкость» электронных пар с плотностью заряда r и с таинственной q; мы можем посмотреть, как выглядят уравнения такой «жидкости»! Итак, подставим волновую функцию (19.17) в уравнение Шредингера (19.3) и вспомним, что r и q это вещественнее функции от х, у и z. Если мы отделим вещественную часть от мнимой, то уравнений станет два. Чтобы запись была короче, я, следуя уравнению (19.19), напишу
Тогда одно из двух уравнений примет вид
Поскольку rv это и есть J [см. (19.18)], то мы просто еще раз получили уравнение непрерывности. Второе же уравнение говорит об изменении q:
Те из вас, кто хорошо знаком с гидродинамикой (думаю, очень немногие), в этом уравнении узнают уравнение движения электрически заряженной жидкости, если только отождествить hq с «потенциалом скоростей»; но только в последнем члене, который должен быть энергией сжатия жидкости, имеется довольно странная зависимость от плотности р. Во всяком случае, это уравнение утверждает, что скорость изменения величины hqдается членом с кинетической энергией (т/2)v2плюс член с потенциальной энергий qj плюс добавочный член с множителем h2, который мы назовем «квантовомеханической энергией». Мы видели, что внутри сверхпроводника электростатические силы поддерживают r очень однородным, поэтому во всех практических применениях этим членом почти наверняка можно пренебречь при условии, что имеется только одна сверхпроводящая область. Если между двумя сверхпроводниками имеется граница (или есть другие обстоятельства, за счет которых r может начать резко меняться), то этот член может стать существенным. Для тех, кто не так уж знаком с уравнениями гидродинамики, я попробую переписать (19.33) в том виде, который позволит яснее видеть физику. Я использую (19.31), чтобы q выразить через v. Беря от всего уравнения (19.33) градиент и выражая с помощью (19.31) Сq через А и v, я получу
Что же означает это уравнение? Вспомним, во-первых, что
Затем заметим, что если взять ротор от уравнения (19.19), то получится
поскольку ротор градиента всегда нуль. Но СXA — это магнитное поле В, так что два первых члена можно записать в виде
q/m(E+vXB).
Наконец, вы должны уяснить себе, что дv/дt обозначает скорость изменения скорости жидкости в данной точке. Если же вас интересует отдельная частица, то ее ускорение выразится полной производной от v (или, как иногда говорят в динамике жидкостей, «сопутствующим ускорением»), связанной с дv/дt формулой [см. гл. 40, § 2 (вып. 7)]
В правой части (19.34) стоит тот же член (v·С)v. Если перенести его влево, то (19.34) перепишется так:
Затем из (19.36) следует
Это и есть уравнения движения сверхпроводящей электронной жидкости. Первое уравнение — это просто закон Ньютона для заряженной жидкости в электромагнитном поле. Оно утверждает, что ускорение каждой частицы жидкости с зарядом q вызывается действием обычной лоренцевой силы q(E+vXB) плюс добавочная сила, являющаяся градиентом какого-то таинственного квантовомеханического потенциала; эта сила обычно мала и становится заметной только при соприкосновении двух разных сверхпроводников. Второе уравнение утверждает, что жидкость «идеальна» — ротор обладает нулевой дивергенцией (у В дивергенция всегда нуль). Это означает, что скорость может быть выражена через потенциал скоростей. Обычно для идеальной жидкости пишут СXv =0, но для идеальной заряженной жидкости в магнитном поле это уравнение обращается в (19.39).
Итак, уравнение Шредингера для электронных пар в сверхпроводнике дает нам уравнения движения электрически заряженной идеальной жидкости. Теория сверхпроводимости совпадает с задачей гидродинамики заряженной жидкости. Если вы хотите решить какую-либо задачу, касающуюся сверхпроводников, вы берете эти уравнения для жидкости [или равноценную им пару (19.32) и (19.33)] и сочетаете их с уравнениями Максвелла, чтобы получить поля. (Заряды и токи, которыми вы пользуетесь, чтобы узнать поля, должны, естественно, включать как заряды и токи от сверхпроводника, так заряды и токи от внешних источников.)