Физика будущего
Шрифт:
Эти графеновые транзисторы настолько малы, что представляют собой абсолютный предел для молекулярных транзисторов вообще. Если сделать транзистор еще меньше, в дело вступит принцип неопределенности и начнется утечка электронов. «Меньше этого, пожалуй, уже не получишь», — говорит Новоселов.
На роль молекулярного транзистора есть и другие перспективные кандидаты, но настоящая проблема здесь куда более приземленная: как подключать их в цепь и как собирать из них коммерчески жизнеспособный продукт. Дело в том, что мало создать один молекулярный транзистор. Молекулярными транзисторами очень трудно манипулировать, что само по себе достаточно
К примеру, графен — настолько новый материал, что пока не ясно, как можно получить его в больших количествах. Ученые могут изготовить лишь около 0,1 мм чистого графена, что, конечно же, слишком мало для коммерческого применения. Остается надеяться лишь на то, что когда-нибудь будет найден процесс самосборки молекулярных транзисторов. В природе иногда встречаются группы молекул, самоорганизовавшиеся, будто по волшебству, в идеальную структуру. До сих пор никому не удалось надежно воспроизвести подобный процесс.
Квантовые компьютеры
Самое, пожалуй, амбициозное предложение состоит в том, чтобы использовать квантовые компьютеры, вычисления в которых проводятся на отдельных атомах. Некоторые ученые утверждают, что квантовые компьютеры — идеал и конечная цель, поскольку атом — мельчайшая единица, на которой можно производить вычисления.
Атом похож на крутящийся волчок. В принципе можно хранить цифровую информацию в группе крутящихся волчков, если условно считать волчок, вращающийся по часовой стрелке, цифрой 0, а против часовой стрелки — цифрой 1. Если вы перевернете один из волчков, 0 сменится 1 (или наоборот) и получится, что вы произвели некое действие.
Но в странном квантовом мире атом в каком-то смысле вращается одновременно и по часовой стрелке, и против нее. (Мы помним, что в квантовом мире находиться одновременно в нескольких местах считается нормальным.) Поэтому получается, что атом может хранить значительно больше информации, чем просто 0 или 1. Его состояние может описывать произвольную смесь 0 и 1. Так что квантовые компьютеры пользуются не битами, а «кубитами» информации. К примеру, какой-то конкретный атом может крутиться на 25% по и на 75% против часовой стрелки. Понятно, что информации здесь куда больше, чем один бит.
Квантовые компьютеры настолько мощны, что ЦРУ уже думает о потенциальной возможности использовать их для взлома кодов. В сущности, взлом шифра любой страны мира сводится к поиску ключа, а ключи к современным шифрам устроены чрезвычайно хитро. К примеру, ключ может быть основан на разложении некоего большого числа на множители. Конечно, число 21 легко представить как произведение 3 и 7. А теперь представьте, что у вас есть целое число из ста цифр и вам нужно представить его как произведение двух других целых чисел. У цифрового компьютера на такую операцию может уйти лет сто. А вот квантовый компьютер будет настолько мощным, что сможет в принципе легко взломать любой подобный шифр. Вообще, на подобных задачах квантовый компьютер легко обгоняет обычный.
Квантовые компьютеры — не фантастика, они уже существуют. Я своими глазами видел квантовый компьютер, когда был в МТИ в лаборатории Сета Ллойда (Seth Lloyd), одного из пионеров в этой области. Его лаборатория забита компьютерами, вакуумными насосами
Так почему на наших столах до сих пор не стоят квантовые компьютеры? Почему не все шифры раскрыты и не все загадки Вселенной разгаданы? Ллойд признался мне: настоящая проблема с квантовыми компьютерами заключается во внешних раздражителях, которые очень легко нарушают хрупкое равновесие атомов и избавиться от которых необычайно сложно.
Когда атомы «когерентны» и колеблются синхронно друг с другом, их равновесие настолько тонко, что от наимельчайших внешних помех синхронность нарушается и они «декогерируют». Даже пролет космической частицы или грузовик под окнами лаборатории может нарушить когерентность атомов и погубить вычисления.
Проблема нарушения когерентности — самый серьезный барьер на пути создания квантовых компьютеров. Всякий, кто сумеет ее решить, не только получит Нобелевскую премию, но и станет богатейшим человеком на свете.
Можно без труда представить, что создание квантовых компьютеров из отдельных когерентных атомов — тяжелый процесс, поскольку атомы быстро декогерируют и сбиваются с ритма. До сих пор самым сложным вычислением, которое удалось провести на квантовом компьютере, является 3x5 = 15. Выглядит, конечно, несолидно, но вспомните: это вычисление произведено на отдельных атомах.
Существует и еще одна странная проблема, берущая начало в квантовой теории и конкретно в принципе неопределенности. Все вычисления, проведенные на квантовых компьютерах, по сути своей обладают некой неопределенностью, так что любое вычисление необходимо проводить множество раз. Дважды плюс два будет четыре… по крайней мере иногда. Если повторить эту операцию много раз, ответ усреднится и вы действительно получите 4. Так что даже арифметика на квантовом компьютере становится какой-то расплывчатой.
Никто не знает, когда будет решена проблема декогерентности. Винтон Серф (Vinton Cerf), один из создателей Интернета, предсказывает: «К 2050 г. мы наверняка найдем способы проводить квантовые расчеты при комнатной температуре».
Необходимо также указать, что ставки в этой игре настолько высоки, что ученые одновременно исследуют несколько разновидностей новых компьютеров. Перечислим некоторые из конкурирующих конструкций.
•Оптические компьютеры. Эти компьютеры считают скорее на световых лучах, чем на электронах. Поскольку лучи света способны проходить сквозь друг друга, оптические компьютеры обещают то преимущество, что их можно будет сделать кубическими, без всяких проводов. Кроме того, лазеры можно изготавливать при помощи все той же литографической технологии травления, что и обычные сегодняшние транзисторы, так что теоретически на одну подложку можно впихнуть миллионы лазеров.