Физика будущего
Шрифт:
Дэйв МакГиннис, один из физиков Фермилаба, очень долго и много думал о практическом использовании антивещества. Мы с ним стояли рядом с теватроном, и Дэйв объяснял мне обескураживающую экономику антивещества. Единственный известный способ получить сколько-нибудь существенное количество антивещества, говорил он, — это воспользоваться мощным коллайдером вроде теватрона; но эти машины чрезвычайно дороги и позволяют получать антивещество лишь в очень малых количествах. К примеру, в 2004 г. коллайдер в CERN выдал ученым несколько триллионных долей грамма антивещества, и обошлось это удовольствие ученым в 20 млн долларов. При такой цене мировая экономика обанкротится прежде, чем удастся получить достаточно антивещества на одну звездную экспедицию. Сами по себе двигатели на антивеществе, подчеркнул
Одна из причин такой бешеной дороговизны антивещества — громадные суммы, которые приходится выкладывать на строительство ускорителей и коллайдеров. Однако сами по себе ускорители — машины универсальные и используются в основном не для производства антивещества, а для получения всяких экзотических элементарных частиц. Это инструмент для физических исследований, а не промышленный аппарат.
Можно предположить, что разработка нового типа коллайдера, предназначенного специально для производства антивещества, могла бы намного снизить его стоимость. Затем массовое производство таких машин позволило бы получить значительное количество антивещества. Харольд Джерриш(Harold Gerrish) из NASA уверен, что цена антивещества может со временем опуститься до 5000 долларов за микрограмм.
Еще одна возможность воспользоваться антивеществом в качестве ракетного топлива заключается в том, чтобы найти в открытом космосе метеорит из антивещества. Если бы такой объект нашелся, его энергии, скорее всего, хватило бы не на один звездолет. Надо сказать, что в 2006 г. в составе российского спутника «Ресурс-ДК» запущен европейский прибор PAMELA, назначение которого — поиск естественного антивещества в открытом космосе.
Если в космосе удастся обнаружить антивещество, то для его сбора человечеству придется придумать что-нибудь вроде электромагнитной сети.
Так что, хотя межзвездные космические аппараты на антивеществе — идея вполне реальная и не противоречит законам природы, в XXI веке они скорее всего не появятся, разве что в самом конце века ученые смогут снизить стоимость антивещества до сколько-нибудь разумной величины. Но если это удастся сделать, проект звездолета на антивеществе наверняка будет рассматриваться одним из первых.
Нанокорабли
Мы давно привыкли к спецэффектам в фильмах вроде «Звездных войн» и «Звездного пути»; при мысли о звездолетах возникают образы громадных футуристических машин, ощетинившихся со всех сторон последними изобретениями в сфере высокотехнологичных приспособлений. А между тем есть и другая возможность: создавать при помощи нанотехнологий крохотные звездолеты, не крупнее наперстка или иглы, а то и еще меньших размеров. Мы заранее уверены, что звездолеты должны быть огромными, как «Энтерпрайз», и нести целый экипаж астронавтов. Но при помощи нанотехнологий основные функции звездолета можно будет заложить в минимальный объем, и тогда к звездам отправится не один громадный корабль, в котором экипаж должен будет жить многие годы, а миллионы крохотных нанокораблей. До места назначения долетит, возможно, лишь небольшая их часть, но главное будет сделано: добравшись до одного из спутников системы назначения, эти корабли построят завод и обеспечат производство неограниченного числа собственных копий.
Винт Серф считает, что нанокорабли можно использовать как для изучения Солнечной системы, так — со временем — и для полетов к звездам. Он говорит: «Если мы сконструируем маленькие, но мощные наноустройства, которые несложно будет перевозить и доставлять на поверхность, под поверхность и в атмосферу соседних с нами планет и спутников, исследование Солнечной системы станет значительно более эффективным… Эти же возможности можно распространить на межзвездные исследования».
Известно, что в природе млекопитающие производят на свет всего по несколько отпрысков и заботятся о том, чтобы все они
Сама концепция нанокораблей основана на очень успешной стратегии, которая широко используется в природе: стратегии стаи. Птицы, пчелы и другие подобные им часто летают стаями или роями. Дело не только в том, что большое число сородичей гарантирует безопасность; кроме того, стая работает как система раннего предупреждения. Если в одном конце стаи происходит что-то опасное — к примеру, нападение хищника, вся стая мгновенно получает информацию об этом. Стая весьма эффективна и энергетически. Птицы, летая характерной V-образной фигурой — клином, используют турбулентные потоки от крыла соседа впереди и тем самым облегчают себе полет.
Ученые говорят о рое, стае или муравьиной семье как о «сверхорганизме», который в некоторых случаях обладает собственным разумом, не зависящим от способностей отдельных составляющих его особей. Нервная система муравья, к примеру, очень проста, а мозг очень мал, но вместе муравьиная семья способна построить сложнейшее сооружение — муравейник. Ученые надеются воспользоваться уроками природы при разработке «стайных» роботов, которым однажды, возможно, предстоит отправиться в далекий путь к иным планетам и звездам.
В чем-то все это напоминает концепцию «разумной пыли», разработкой которой занимается Пентагон: миллиарды частиц, снабженных крохотными датчиками, рассеиваются в воздухе и осуществляют разведку. Каждый датчик сам по себе разума не имеет и дает лишь крохотную крупинку информации, но вместе они могут обеспечить своим хозяевам горы всевозможных данных. DARPA спонсировало исследования в этой области с прицелом на военное применение в будущем — к примеру, при помощи разумной пыли можно следить за вражескими позициями на поле боя. В 2007 и 2009 гг. ВВС США выпустили подробные планы вооружения на ближайшие несколько десятилетий; там есть все — от продвинутых версий беспилотного самолета Predator (сегодня он стоит 4,5 млн долларов) до огромных стай крохотных дешевых датчиков размером с булавочную головку.
Ученых также интересует эта концепция. Стаи разумной пыли пригодились бы для наблюдения в реальном времени за ураганом с тысяч различных точек; точно так же можно было бы наблюдать за грозами, вулканическими извержениями, землетрясениями, наводнениями, лесными пожарами и другими природными явлениями. В фильме «Смерч», к примеру, мы наблюдаем за командой отважных охотников за ураганами, которые рискуют жизнью и здоровьем, размещая датчики вокруг торнадо. Мало того что это очень рискованно, но и еще не слишком эффективно. Вместо того чтобы с риском для жизни расставлять несколько датчиков вокруг вулканического кратера во время извержения или вокруг гуляющего по степи столба торнадо и получать с них информацию о температуре, влажности и скорости ветра, гораздо эффективнее было бы рассеять в воздухе разумную пыль и получить данные одновременно с тысяч различных точек, разбросанных по площади в сотни квадратных километров. В компьютере эти данные сложатся в трехмерную картинку, которая в реальном времени покажет вам развитие урагана или различные фазы извержения. Коммерческие предприятия уже работают над образцами подобных крошечных датчиков, и некоторые из них размерами действительно не превосходят булавочной головки.
Еще одно преимущество нанокораблей состоит в том, что им, чтобы добраться до космического пространства, требуется совсем немного топлива. Если громадные ракеты-носители способны разогнаться лишь до скорости 11 км/с, то крошечные объекты вроде нанокораблей относительно несложно вывести в космос с невероятно высокими скоростями. Скажем, элементарные частицы можно разгонять до субсветовых скоростей при помощи обычного электрического поля. Если придать наночастицам небольшой электрический заряд, их тоже легко можно будет разгонять электрическим полем.