Физика для всех. Движение. Теплота
Шрифт:
Ружье и пуля во время выстрела ведут себя, как замкнутая группа двух тел, несмотря на то, что испытывают действие силы земного притяжения. Вес пули мал по сравнению с силой пороховых газов и явление отдачи произойдет по одним и тем же законам, независимо от того, где будет произведен выстрел, – на Земле или в ракете, летящей в межпланетном пространстве.
Закон сохранения импульса позволяет легко решать различные задачи, относящиеся к столкновениям тел. Попробуем одним глиняным шариком попасть в другой – они слипнутся и будут продолжать движение вместе; если выстрелить из ружья в деревянный шар, он покатится вместе с застрявшей в нем пулей; стоявшая вагонетка покатится, если человек с разбегу прыгнет в нее. Все приведенные примеры
Импульсы тел до встречи были m 1 v 1и m 2 v 2, после столкновения тела объединились, их общая масса равна m 1+ m 2. Обозначив скорость объединившихся тел через V, получим:
m1v1+ m2v2= ( m1+ m2) V,
или
Напомним о векторном характере закона сохранения импульса. Импульсы mv, стоящие в числителе формулы, надо складывать как векторы.
«Объединяющий» удар при встрече движущихся под углом тел показан на рис. 31. Для того чтобы найти величину скорости, надо длину диагонали параллелограмма, построенного на векторах импульсов встречающихся тел, разделить на сумму их масс.
Реактивное движение
Человек движется, отталкиваясь от земли; лодка плывет потому, что гребцы отталкиваются веслами от воды; теплоход также отталкивается от воды, только не веслами, а винтами. Также отталкиваются от земли и поезд, идущий по рельсам, и автомашина, – вспомните, как трудно автомашине сдвинуться с места в гололедицу.
Итак, отталкивание от опоры – как будто бы необходимое условие движения; даже самолет и тот движется, отталкиваясь винтом от воздуха.
Однако так ли это? Нет ли какого-нибудь хитрого способа двигаться, ни от чего не отталкиваясь? Если вы катаетесь на коньках, то легко можете убедиться на своем опыте, что такое движение вполне возможно. Возьмите в руки тяжелую палку и встаньте на лед. Бросьте палку вперед – что произойдет? Вы покатитесь назад, хотя и не думали отталкиваться ногой от льда.
Явление отдачи, которое мы только что изучали, дает нам в руки ключ к осуществлению движения без опоры, движения без отталкивания. Отдача дает возможность ускорять движение и в безвоздушном пространстве, где уж решительно не от чего отталкиваться.
Отдача, вызываемая выбрасываемой из сосуда струей пара (реакция струи), использовалась еще в древности для создания любопытных игрушек. На рис. 32 изображена древняя паровая турбина, изобретенная во втором веке до нашей эры. Шаровой котел опирался на вертикальную ось. Вытекая из котла через
В наши дни использование реактивного движения уже вышло далеко за пределы создания игрушек и сбора интересных наблюдений. Двадцатый век называют иногда веком атомной энергии, однако с не меньшим основанием его можно назвать веком реактивного движения, так как трудно переоценить те далекие последствия, к которым приведет использование мощных реактивных двигателей. Это не только революция в самолетостроении, это начало общения человека со Вселенной.
Принцип реактивного движения позволил создать самолеты, движущиеся со скоростью в несколько тысяч километров в час, летающие снаряды, поднимающиеся на высоту в сотни километров над Землей, искусственные спутники Земли и космические ракеты, совершающие межпланетные путешествия.
Реактивный двигатель – это машина, из которой выбрасываются с большой силой образующиеся при горении топлива газы. Ракета движется в сторону, обратную направлению газового потока.
Чему равна сила тяги, уносящая ракету в пространство? Мы знаем, что сила равна изменению импульса в единицу времени. Согласно закону сохранения, импульс ракеты меняется на величину импульса mvвыброшенного газа.
Этот закон природы позволяет вычислить, например, связь между силой реактивной тяги и необходимым для этого расходом топлива. При этом нужно предположить величину скорости истечения продуктов сгорания. Возьмем, например, такие цифры: газы выбрасываются со скоростью 2000 м/с в количестве 10 тонн за секунду, тогда сила тяги будет примерно равна 2·10 12дин, т.е. круглым счетом 2000 Т.
Определим изменение скорости движущейся в межпланетном пространстве ракеты.
Импульс массы газа M, выброшенной со скоростью u, равняется u· M. Импульс ракеты массы Mвозрастет при этом на величину M· v. Согласно закону сохранения, эти две величины равны друг другу:
Однако, если мы захотим вычислить скорость ракеты при выбрасывании масс, сравнимых с массой ракеты, то выведенная формула окажется непригодной. Ведь она предусматривает неизменную массу ракеты. Однако в силе остается следующий важный результат: при одинаковых относительных изменениях массы скорость увеличивается на одну и ту же величину. Расчет по точной формуле показывает, что при уменьшении массы ракеты вдвое скорость ее достигнет 0,7 u.
Для того чтобы довести скорость ракеты до 3 u, надо сжечь массу вещества m= (19/20) M. Это значит, что лишь 1/20 часть массы ракеты можно сохранить, если мы желаем довести скорость до 3 u, т.е. до 6–8 км/с.
Чтобы добиться скорости в 7 u, масса ракеты за время разгона должна уменьшиться в 1000 раз.
Эти расчеты предостерегают нас от погони за увеличением массы горючего, которое можно захватить в ракету. Чем больше мы возьмем горючего, тем больше придется его сжечь. При данной скорости истечения газов очень трудно добиться увеличения скорости ракеты.