Физика для всех. Движение. Теплота
Шрифт:
Основное в задаче достижения больших скоростей у ракет – увеличение скорости истечения газов. В этом отношении существенную роль должно сыграть применение в ракетах двигателей, работающих на новом, ядерном горючем.
При неизменной скорости истечения газов выигрыш в скорости при той же массе горючего получается при использовании многоступенчатых ракет. В одноступенчатой ракете уменьшается масса топлива, а пустые баки продолжают движение с ракетой. На ускорение массы ненужных топливных баков требуется дополнительная энергия. Целесообразно с израсходованием топлива отбросить и топливные баки. В современных многоступенчатых ракетах отбрасываются не только баки и трубопроводы, но и двигатели отработавших ступеней.
Разумеется, лучше всего было бы отбрасывать ненужную массу ракеты непрерывно. Пока такой конструкции не существует. Стартовый вес трехступенчатой ракеты с таким же «потолком», как у
Движение под действием силы тяжести
Будем скатывать небольшую тележку с двух очень гладких наклонных плоскостей. Одну доску возьмем значительно короче другой и положим их на одну и ту же опору. Тогда одна наклонная плоскость будет крутой, а другая – пологой. Верхушки обеих досок – места старта тележки – будут на одинаковой высоте. Как вы полагаете, какая из тележек приобретет большую скорость, скатившись с наклонной доски? Многие решат, что та, которая съехала по более крутой плоскости.
Опыт покажет, что они ошиблись, – тележки приобретут одинаковую скорость. Пока тело движется по наклонной плоскости, оно находится под действием постоянной силы, а именно (рис. 33) под действием составляющей силы тяжести, направленной вдоль движения. Скорость v, которую приобретает тело, движущееся с ускорением aна пути S, равна, как мы знаем, v= sqrt(2 aS).
Откуда же видно, что эта величина не зависит от угла наклона плоскости? На рис. 33 мы видим два треугольника. Один из них изображает наклонную плоскость. Малый катет этого треугольника, обозначенный буквой h, – высота, с которой начинается движение; гипотенуза Sесть путь, проходимый телом в ускоренном движении. Маленький треугольник сил с катетом maи гипотенузой mgподобен большому, так как они прямоугольные и углы их равны как углы со взаимно перпендикулярными сторонами. Значит, отношение катетов должно равняться отношению гипотенуз, т.е.
Мы доказали, что произведение aS, а значит, и конечная скорость тела, скатившегося с наклонной плоскости, не зависит от угла наклона, а зависит лишь от высоты, с которой началось движение вниз. Скорость v= sqrt(2 gh) для всех наклонных плоскостей при единственном условии, что движение началось с одной и той же высоты h. Эта скорость оказалась равной скорости свободного падения с высоты h.
Измерим скорость тела в двух местах наклонной плоскости – на высотах h 1и h 2. Скорость тела в момент прохождения через первую точку обозначим v 1, а скорость в момент прохождения через вторую точку – v 2.
Если начальная высота, с которой началось движение, есть h, то квадрат скорости тела в первой точке будет v 1 2= 2 g( h– h 1), а во второй точке v 2 2= 2 g( h– h 2). Вычитая первое из второго, мы найдем, как связаны скорости тела в начале и в конце какого угодно кусочка наклонной плоскости с высотами этих точек:
v22– v 1 2= 2 g( h 1– h 2).
Разность
Эту формулу можно переписать следующим образом:
Мы хотим подчеркнуть такой записью, что сумма половины квадрата скорости и высоты, умноженной на g, одинакова для любой точки наклонной плоскости. Можно сказать, что величина v 2/2 + ghсохраняется во время движения.
Самое замечательное в найденном нами законе то, что он справедлив для движения без трения по любой горке и вообще по любому пути, состоящему из чередующихся подъемов и спусков различной крутизны. Это следует из того, что любой путь можно разбить на прямолинейные участки. Чем меньше брать отрезки, тем ближе будет приближаться ломаная линия к кривой. Каждый прямой отрезок, на которые разбит криволинейный путь, можно считать частью наклонной плоскости и применить к нему найденное правило.
Значит, в любой точке траектории сумма v 2/2 + ghодинакова. Поэтому изменение квадрата скорости не зависит от формы и длины пути, по которому двигалось тело, а определяется лишь разностью высот точек начала и конца движения.
Читателю может показаться, что наше заключение не совпадает с повседневным опытом: на длинном отлогом пути тело вовсе не набирает скорость и в конце концов остановится. Так оно и есть, но ведь мы в наших рассуждениях не учитывали силу трения. Написанная выше формула верна для движения в поле тяжести Земли под действием одной лишь силы тяжести. Если силы трения малы, то выведенный закон будет выполняться совсем неплохо. На гладких ледяных горах санки с металлическими полозьями скользят с очень небольшим трением. Можно устроить длинные ледяные дорожки, начинающиеся с крутого спуска, на котором набирается большая скорость, а затем причудливо извивающиеся вверх и вниз. Конец путешествия по таким горкам (когда санки остановятся сами собой) при полном отсутствии трения произошел бы на высоте, равной начальной. А так как трения избежать нельзя, то точка, с которой началось движение санок, будет выше того места, где они остановятся.
Закон, по которому конечная скорость не зависит от формы пути при движении под действием силы тяжести, может быть применен для решения различных интересных задач.
В цирке много раз показывали как захватывающий аттракцион вертикальную «мертвую петлю». Велосипедист или тележка с акробатом устанавливаются на высоком помосте. Ускоряющийся спуск, затем подъем. Вот акробат уже в положении вниз головой, опять спуск – и мертвая петля описана. Рассмотрим задачу, которую приходится решать инженеру цирка. На какой высоте надо сделать помост, с которого начинается спуск, чтобы акробат не свалился в наивысшей точке мертвой петли? Условие нам известно: центробежная сила, прижимающая акробата к помосту, должна уравновесить силу тяжести, направленную в противоположную сторону. Значит, mg<= mv 2/ rгде r– радиус мертвой петли, а v– скорость движения в верхней точке петли. Для того чтобы эта скорость была достигнута, надо начать движение с места, расположенного выше верхней точки петли на некоторую величину h. Начальная скорость акробата равна нулю, поэтому в верхней точке петли v 2= 2 gh. Но, с другой стороны, v 2>= gr. Значит, между высотой hи радиусом петли имеется соотношение h>= r/2. Помост должен возвышаться над верхней точкой петли на величину, не меньшую половины радиуса петли. Учитывая неизбежную силу трения, приходится, конечно, брать некоторый запас высоты.