Физика для всех. Движение. Теплота
Шрифт:
Так как = cT, то c= sqrt( g/(2)). Значит, при возникновении сильного волнения в каком-либо районе моря до отдаленных мест добираются сначала самые длинные волны, у которых наибольшая скорость распространения.
Как передают звук твердые тела
Существует немаловажное различие между передачей звука через жидкие тела и газы, с одной стороны, и через твердые предметы – с другой. Различие это состоит в том, что в твердых телах наряду с продольными волнами могут возникнуть и поперечные.
Термин этот говорит сам за себя –
Звуковая волна в газах и жидкостях – это волна чередующихся сжатий и разрежений. Такая волна может быть только продольной – поперечные колебания частиц не могут вызвать местных изменений объема, т.е. не могут привести к сжатиям и разрежениям. Поперечная волна в жидкости и газе невозможна, так как эти среды сопротивляются сжатию и растяжению, но не сдвигу. Твердое тело сопротивляется не только изменению своего объема, но и изменению формы, поэтому наряду с продольными волнами в твердом теле могут возникнуть и поперечные.
При распространении поперечной волны в твердой среде образуется волна сдвига – частицы тела сдвигаются волной попеременно в разные стороны от линии ее распространения. Продольные же волны в твердой среде сопровождаются сжатиями и разрежениями, как и волны в жидкостях и газах.
Поперечная и продольная волны передают звук одинаково хорошо, но не одинаково быстро. Продольные волны распространяются всегда быстрее поперечных.
Вот характерные цифры. В стали скорость поперечных волн – около 3000 м/с, а продольных – 6000 м/с. Меньшую скорость распространения имеет звук в мягком свинце – 700 м/с для поперечных волн и 2200 м/с для продольных.
Особенно велико отношение между скоростью продольных и поперечных волн в резине. Резина очень слабо сопротивляется изменению формы, но совсем нелегко изменяет свой объем. Поперечные волны распространяются в резине со скоростью всего 30 м/с – в 10 раз меньшей, чем скорость звука в воздухе.
Кроме этих двух типов волн по твердому телу распространяются также поверхностные волны. Однако они совершенно не похожи на морские волны, для которых силой, возвращающей отклоненные частички, является сила тяжести. Волны на поверхности твердого тела поддерживаются упругими силами, связывающими частицы твердого тела. Естественно поэтому, что скорость поверхностных волн зависит от упругих свойств. Примерно скорость поверхностных волн составляет 0,9 скорости распространения поперечных волн. Так же как и в жидкости, траектории колеблющихся частичек лежат в плоскости, поперечной к волновому фронту. Точки движутся по замкнутым кривым, похожим на эллипсы. По мере отдаления от поверхности вид эллипса меняется, амплитуда колебания становится меньше, волна затухает.
Вестники землетрясения
Земля хорошо передает звук. Почти в каждом романе из времен средневековья вы найдете сцену погони за скачущим на коне героем. «Всадник вдруг остановил коня, спешился и приложил ухо к земле: “За нами погоня, нужно спешить!”». Действительно, удары копыт лошади о землю передаются на расстояние более километра. Земля, как и всякое упругое тело, служит проводником звуковых волн.
Звуковые волны, распространяющиеся через землю, приносят нам сведения о землетрясениях и знакомят с процессами, происходящими в земной толще. Звуковые волны, возникающие при землетрясении, называются сейсмическими. Наличие сейсмической волны, ее амплитуда, скорость, длина, частота колебания – все это может быть определено специальными очень чуткими приборами – сейсмографами.
Сейсмографы –
Кроме таких сейсмографов, записывающих вертикальные смещения почвы, употребляются и горизонтальные сейсмографы. Принцип действия горизонтального сейсмографа показан на рис. 127. Главной частью прибора является почти вертикальный стержень. Эксцентричный груз превращает этот стержень в маятник, способный поворачиваться около оси стержня. Если почва спокойна, то груз маятника покоится в самом низком положении. Толчок в горизонтальном направлении вызывает смещение оси маятника, между тем как тяжелый груз по инерции вначале остается на месте. Поворот маятника регистрируется самопишущим устройством.
Если установить один вертикальный и два горизонтальных сейсмографа, колеблющихся во взаимно перпендикулярных плоскостях, то можно записать величину и направление любого смещения.
Со словом «землетрясение» связывают обычно представление о разрушающихся домах, деревьях, проваливающихся в образовавшиеся расселины, гибнущих людях. Такие большие землетрясения бывают редко, а термин «землетрясение» исследователи-сейсмологи применяют ко всем подземным происшествиям, способным привести в движение перо сейсмографа, записывающего колебания земной коры. Такие землетрясения, кроме сейсмографов, никто и не замечает. За год их происходит на земном шаре около ста тысяч. Оказывается, «подземное царство» живет весьма деятельно!
От очага землетрясения сейсмическая волна распространяется во все стороны и будет принята многими сейсмографами, установленными в разных городах и странах. О каждом подземном толчке сведения будут доставлены трижды, так как все три типа волн, о которых только что шла речь, отправятся в путешествие от места землетрясения. Первой к наблюдателю придет продольная волна, за ней – поперечная и последней прибудет поверхностная волна.
В то же время поверхностные волны наиболее существенны для сейсмолога, так как (по легко понятной причине) они наиболее интенсивны.
На стр. 334 мы говорили, что интенсивность звуковой волны убывает обратно пропорционально квадрату расстояния от источника звука. Но это не относится к поверхностным волнам. Построим около источника звука не два шара, а две окружности. Энергия волны, проходящей через окружность, пропорциональна I·2 r, где I– интенсивность. Следовательно, при отсутствии потерь энергии интенсивность поверхностной волны падает как 1/ r, а не как 1/ r 2. Поэтому к наблюдателю эти волны приходят существенно менее ослабленными, чем продольные и поперечные пространственные волны.