Чтение онлайн

на главную

Жанры

Физика для всех. Движение. Теплота
Шрифт:

Статистическая физика показывает путь, следуя по которому можно вычислить свойства тел, состоящих из данного количества частиц. Конечно, не следует думать, что эти методы расчета всемогущи. Если характер движения атомов в теле очень сложен, как это имеет место в жидкостях, то реальное вычисление становится практически неосуществимым.

Мощность

Чтобы судить о возможности машины производить работу, а также о потреблении работы, пользуются понятием мощности. Мощность – это работа, совершенная в единицу времени.

Существует много различных единиц измерения мощности. Системе CGS соответствует единица мощности эрг/с. Но 1 эрг/с – ничтожно малая мощность, и эта единица поэтому для практики неудобна. Несравненно

более распространена единица мощности, которую получают делением джоуля на секунду. Эта единица называется ватт (Вт). 1 Вт = 1 Дж/с = 10 7эрг/с.

Когда и эта единица мала, ее умножают на тысячу и пользуются киловаттом.

От старых времен перешла к нам в наследство единица мощности, называемая лошадиной силой. Когда-то на заре развития техники это название имело глубокий смысл. Машина мощностью в 10 лошадиных сил заменяет 10 лошадей – так заключал покупатель, даже если он не имел представления о единицах мощности.

Разумеется, лошадь лошади рознь. Автор первой единицы мощности, по-видимому, полагал, что «средняя» лошадь способна произвести за одну секунду 75 кГм работы. Такая единица и принята: 1 л.с. = 75 кГм/с.

Тяжеловозы способны производить большую работу, в особенности в момент трогания с места. Однако мощность средней лошади скорее близка к 1/2 лошадиной силы.

Пересчитывая лошадиные силы в киловатты, получим: 1 л.с. = 0,735 кВт.

В житейской практике и технике мы сталкиваемся с двигателями самых различных мощностей. Мощность патефонного моторчика 10 Вт, мощность двигателя автомашины «Волга» 75 л.с. = 55 кВт, мощность двигателей пассажирского самолета ИЛ-18 16 000 л.с. Небольшая колхозная электростанция имеет мощность 100 кВт. Рекордная в этом отношении Красноярская ГЭС будет иметь мощность 5 млн. кВт.

Единицы мощности, с которыми мы познакомились, подсказывают еще одну единицу энергии, хорошо известную всюду, где установлены счетчики электрической энергии, а именно киловатт-час. Один киловатт-час – это работа, произведенная в течение одного часа мощностью в один киловатт. Легко пересчитать эту новую единицу в другие, уже знакомые: 1 кВт·ч = 3,6·10 6Дж = 861 ккал = 367 000 кГм. Читатель может спросить: неужели нужна была еще одна единица энергии? Ведь их и так уже немало! Но понятие энергии пронизывает разные области физики, и, думая об удобствах данной области, физики вводили все новые и новые единицы энергии. Это привело, наконец, к выводу о необходимости ввести единую для всех областей физики единицу энергии, что и было сделано новой системой единиц СИ ( см. стр. 12 ). Однако еще пройдет немало времени, пока «старые» единицы уступят место счастливой избраннице, и поэтому пока киловатт-час еще не последняя единица энергии, с которой придется знакомиться в процессе изучения физики.

Коэффициент полезного действия

При помощи различных машин можно заставить источники энергии производить различную работу – поднимать грузы, двигать станки, перевозить грузы и людей.

Можно подсчитать количество энергии, вложенной в машину, и значение полученной от нее работы. Во всех случаях цифра на выходе окажется меньше, чем цифра на входе, – часть энергии теряется в машине.

Доля энергии, которая полностью используется в машине на нужные нам цели, называется коэффициентом полезного действия (КПД) машины. Значения КПД дают обычно в процентах.

Если КПД равен 90 %, это значит, что машина теряет всего 10 % энергии. КПД 10 % означает, что машина использует всего лишь 10 % поступившей в нее энергии.

Если машина превращает в работу механическую энергию, то ее КПД в принципе можно сделать очень большим. Увеличение КПД достигается в этом случае борьбой с неизбежным трением. Улучшить смазку, ввести более совершенные подшипники, уменьшить сопротивление со стороны среды, в которой происходит движение, – вот средства приблизить КПД к единице (к 100 %).

Обычно при превращении механической энергии в работу в качестве промежуточного этапа (как на гидроэлектростанциях) используют электрическую передачу. Разумеется,

это тоже связано с дополнительными потерями. Однако они невелики, и потери при преобразовании механической энергии в работу и в случае использования электрической передачи могут быть сведены к нескольким процентам.

Совсем иначе обстоит дело в тех случаях, когда машина использует химическую энергию вещества.

До настоящего времени не существует работающих в большом масштабе машин, которые превращали бы энергию горючего непосредственно в механическую или электрическую энергию. Поэтому неизбежен промежуточный этап превращения химической энергии в тепловую. Для получения работы из горючего вещества его нужно сжечь и создать в каком-то объеме (печи) высокую температуру. На разности температур между печью и окружающей средой и работает тепловая машина. Она отбирает часть потока тепловой энергии и превращает его в работу. Но только часть потока и ни в каких условиях не весь поток.

Если перепад температур невелик, то в сторону удается увести лишь маленький ручеек энергии, а при температуре среды забрать тепло у источника совсем невозможно. Если перепад температур большой, то в работу удается превратить гораздо более существенную часть теплового потока.

Полезное использование тепловой энергии может происходить с тем большим успехом, чем больше разность температур источника потока тепла и окружающей среды.

Эта разность температур ставит предел возможностям усовершенствования тепловой машины. Если ликвидировать все потери в машине, создать идеальные подшипники, пользоваться не существующими в природе идеальными теплоизолирующими и теплопроводящими материалами, то КПД все равно не будет равен единице, а лишь достигнет некоторого максимума. Это предельное значение КПД при превращении в работу теплового потока, идущего от нагретого тела с температурой Т 1к среде, находящейся при температуре Т 0, равно:

Так, если источник теплового потока имеет температуру 100 °C, а среда 20 °C, то максимальный КПД равен 1 - 293/373, т.е. около 20 %. При температуре источника 1000° получим уже 76 %.

Ясно, что надо стремиться сжигать топливо так, чтобы достигнуть как можно более высокой температуры.

Из сказанного понятно, сколь невыгодно использование теплового потока для производства механической работы. В лучших современных газовых турбинах ( см. стр. 381 ) удается достигнуть КПД всего около 45 %. Было бы лучше всего научиться превращать химическую энергию непосредственно в механическую работу, минуя тепловую. Мы знаем, что в принципе при таком прямом превращении можно было бы избежать потерь энергии. Однако, как уже говорилось, техника пока еще не решила этой задачи.

Источники энергии на Земле

Не все источники энергии равноценны. Одни представляют лишь принципиальный интерес, с другими связано существование цивилизации. Одни источники практически неисчерпаемы, другим придет конец в ближайшие столетия, а то и десятилетия.

Уже несколько миллиардов лет посылает свои живительные лучи на Землю главный опекун нашей планетной системы – Солнце. Этот источник энергии можно смело назвать неисчерпаемым. Каждый квадратный метр земной поверхности получает от Солнца энергию средней мощности около 1,5 кВт; за год это составит около 10 миллионов килокалорий энергии – такое количество тепла дают сотни килограммов угля. Сколько же тепла получает от Солнца весь земной шар? Подсчитав площадь Земли и учитывая неравномерное освещение солнечными лучами земной поверхности, получим около 10 14кВт. Это в 100 тысяч раз больше энергии, которую получают от всех источников энергии на Земле все фабрики, заводы, электростанции, автомобильные и самолетные моторы, короче – в 100 тысяч раз больше мощности энергии, потребляемой всем населением земного шара (порядка миллиарда киловатт).

Поделиться:
Популярные книги

Невеста

Вудворт Франциска
Любовные романы:
любовно-фантастические романы
эро литература
8.54
рейтинг книги
Невеста

Энфис 4

Кронос Александр
4. Эрра
Фантастика:
городское фэнтези
рпг
аниме
5.00
рейтинг книги
Энфис 4

Игрок, забравшийся на вершину. Том 8

Михалек Дмитрий Владимирович
8. Игрок, забравшийся на вершину
Фантастика:
фэнтези
рпг
5.00
рейтинг книги
Игрок, забравшийся на вершину. Том 8

Папина дочка

Рам Янка
4. Самбисты
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Папина дочка

Чужое наследие

Кораблев Родион
3. Другая сторона
Фантастика:
боевая фантастика
8.47
рейтинг книги
Чужое наследие

Идеальный мир для Социопата 7

Сапфир Олег
7. Социопат
Фантастика:
боевая фантастика
6.22
рейтинг книги
Идеальный мир для Социопата 7

Восход. Солнцев. Книга VIII

Скабер Артемий
8. Голос Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Восход. Солнцев. Книга VIII

Аномальный наследник. Том 1 и Том 2

Тарс Элиан
1. Аномальный наследник
Фантастика:
боевая фантастика
альтернативная история
8.50
рейтинг книги
Аномальный наследник. Том 1 и Том 2

Мир-о-творец

Ланцов Михаил Алексеевич
8. Помещик
Фантастика:
альтернативная история
5.00
рейтинг книги
Мир-о-творец

Совок 9

Агарев Вадим
9. Совок
Фантастика:
попаданцы
альтернативная история
7.50
рейтинг книги
Совок 9

Инцел на службе демоницы 1 и 2: Секса будет много

Блум М.
Инцел на службе демоницы
Фантастика:
фэнтези
5.25
рейтинг книги
Инцел на службе демоницы 1 и 2: Секса будет много

Кодекс Крови. Книга Х

Борзых М.
10. РОС: Кодекс Крови
Фантастика:
фэнтези
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга Х

Бальмануг. (Не) Любовница 2

Лашина Полина
4. Мир Десяти
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Бальмануг. (Не) Любовница 2

Любовь Носорога

Зайцева Мария
Любовные романы:
современные любовные романы
9.11
рейтинг книги
Любовь Носорога