Физика для всех. Молекулы
Шрифт:
Наиболее точная симметрия осуществляется в мире кристаллов, но и здесь она неидеальная: невидимые глазом трещинки, царапины всегда делают равные грани слегка отличными друг от друга.
Рис. 2.8
На рис. 2.8 изображена детская бумажная вертушка. Она тоже симметрична, но плоскость симметрии через нее провести нельзя. В чем же тогда заключается симметрия этой фигурки? Прежде всего спросим себя о симметричных ее частях. Сколько их? Очевидно, четыре. В чем заключается правильность взаимного расположения этих одинаковых частей? Это также нетрудно заметить. Повернем вертушку на прямой угол против
Итак, ось симметрии - это такая прямая линия, поворотом около которой на долю оборота можно перевести тело в положение, не отличимое от исходного. Порядок оси (в нашем случае 4-й) указывает, что такое совмещение происходит при повороте на 1/4 окружности. Следовательно, четырьмя последовательными поворотами мы возвращаемся в исходное положение.
Встречаемся ли мы с симметрией любого типа в царстве кристаллов? Опыт показывает, что нет.
В кристаллах мы встречаемся лишь с осями симметрии 2-, 3-, 4- и 6-го порядков. И это не случайно. Кристаллографы доказали, что это связано с внутренним строением кристалла. Поэтому число различных видов или, как говорят, классов симметрии кристаллов относительно невелико - оно равно.
Строение кристаллов
Почему так красива, правильна форма кристалла? Грани его, блестящие и ровные, выглядят так, как будто бы над кристаллом поработал искусный шлифовальщик. Отдельные части кристалла повторяют друг друга, образуя красивую симметричную фигуру. Эта исключительная правильность кристаллов была знакома уже людям древности. Но представления древних ученых о кристаллах мало отличались от сказок и легенд, сочиненных поэтами, воображение которых было пленено красотой кристаллов. Верили, что хрусталь образуется из льда, а алмаз - из хрусталя. Кристаллы наделялись множеством таинственных свойств: исцелять от болезней, предохранять от яда, влиять на судьбу человека...
В XVII - XVIII веках появились первые научные взгляды на природу кристаллов. Представление о них дает рис. 2.9 , заимствованный из книги XVIII века. По мнению ее автора, кристалл построен из мельчайших "кирпичиков", плотно приложенных друг к другу. Эта мысль довольно естественна. Разобьем сильным ударом кристалл кальцита (углекислый кальций). Он разлетится на кусочки разной величины. Рассматривая их внимательно, мы обнаружим, что эти куски имеют правильную форму, вполне подобную форме большого кристалла - их родителя. Наверное, рассуждал ученый, и дальнейшее дробление кристалла будет происходить таким же образом, пока мы не дойдем до мельчайшего, невидимого глазом кирпичика, представляющего кристалл данного вещества. Эти кирпичики так малы, что построенные из них ступенчатые "лестницы" - грани кристалла - кажутся нам безукоризненно гладкими. Ну, а дальше, что же представляет собой этот "последний" кирпич? На такой вопрос ученый того времени ответить не мог.
Рис. 2.9
"Кирпичная" теория строения кристалла принесла науке большую пользу. Она объяснила происхождение прямых ребер и граней кристалла: при росте кристалла одни кирпичики подстраиваются к другим, и грань растет подобно стене дома, выкладываемой руками каменщика.
Итак, ответ на вопрос о причине правильности и красоты формы кристаллов был дан уже давно. Причиной этого обстоятельства является внутренняя правильность. А правильность заключается в многократном повторении одних и тех же элементарных частей.
Представьте себе парковую решетку, сделанную из прутьев
Какое же отношение имеют парковая решетка и обои к кристаллу? Самое прямое. Парковая решетка состоит из звеньев, повторяющихся вдоль линии, обои - из картинок, повторяющихся вдоль плоскости, а кристалл - из групп атомов, повторяющихся в пространстве. Поэтому и говорят, что атомы кристалла образуют пространственную (или кристаллическую) решетку.
Нам надо обсудить ряд деталей, относящихся к пространственной решетке, но чтобы не затруднять художника построением сложных объемных рисунков, мы объясним то, что нам надо, на примере куска обоев.
На рис. 2.10 выделен тот наименьший кусок, простым перекладыванием которого можно составить все обои. Чтобы выделить такой кусок, проведем из любой точки рисунка, например из центра мячика, две линии, соединяющие выбранный мячик с двумя соседними. На этих линиях можно построить, как это видно на нашем рисунке, параллелограмм. Перекладывая этот кусочек в направлении основных исходных линий, можно составить весь рисунок обоев. Этот наименьший кусок может быть выбран по-разному: из рисунка видно, что можно выбрать несколько разных параллелограммов, каждый из которых содержит одну фигурку. Подчеркнем, что для нас в данном случае безразлично, будет ли эта фигурка целой внутри выделенного куска или разделенной на части линиями, ограничивающими этот кусок.
Рис. 2.10
Было бы неверным полагать, что, изготовив повторяющуюся на обоях фигурку, художник может считать свою задачу оконченной. Это было бы так лишь в том случае, если составление обоев можно было бы провести единственным способом - прикладыванием к данному кусочку, содержащему одну фигурку, другого такого же, параллельно сдвинутого.
Однако кроме этого простейшего способа есть еще шестнадцать способов заполнения обоев закономерно повторяющимся рисунком, т. е. всего существует 17 типов взаимных расположений фигурок на плоскости. Они показаны на рис. 2.11. В качестве повторяющегося рисунка здесь выбрана более простая, но, так же как и на рис. 2.10, лишенная собственной симметрии фигурка. Однако составленные из нее узоры симметричны, и их различие определяется различием симметрии расположения фигурок.
Рис. 2.11
Мы видим, что, например, в первых трех случаях . рисунок не обладает зеркальной плоскостью симметрии -- нельзя поставить вертикальное зеркало так,; чтобы одна часть рисунка была "отражением" другой части. Напротив, в случаях 4 и 5 имеются плоскости симметрии. В случаях 8 и 9 можно "установить" два взаимно перпендикулярных зеркала. В случае 10 имеются оси 4-го порядка, перпендикулярные к чертежу, в случае 11 - оси 3-го порядка. В случаях 13 и 15 имеются оси 6-го порядка и т. д.
Плоскости и оси симметрии наших рисунков выступают не поодиночке, а параллельными "семействами". Если мы нашли одну точку, - через которую можно провести ось (или плоскость) симметрии, то найдем быстро и соседнюю и далее на таком же расстоянии третью и четвертую и т. д. точки, через которые проходят такие же оси (или плоскости) симметрии.
17 типов симметрии плоского узора не исчерпывают, конечно, всего разнообразия узоров, составляемых из одной и той же фигурки; художник должен указать еще одно обстоятельство: как расположить фигурку по отношению к граничным линиям ячейки. На рис. 2.12 показаны два узора обоев с той же исходной фигуркой по различно расположенной по отношению к зеркалам. Оба эти узора относятся к случаю 8.