Физика веры
Шрифт:
Можно только поражаться титанической интуиции Эйнштейна, более 30 лет боровшегося с тем направлением развития, которое приняла квантовая физика при его жизни: “...Я беспрестанно искал другой путь для решения квантовой загадки... Эти поиски обусловлены глубокой, принципиального характера неприязнью, которую мне внушают основы статистической квантовой теории” (79, с. 435), Эйнштейн выступал против принципа неопределенности, за детерминизм, против той роли, которую в квантовой механике отводят акту наблюдения (влиянию измерительного прибора). Он полагал, что квантовая теория может стать более совершенной на пути расширения общего принципа относительности (26, ч. 2, с. 48).
Внешнюю,
В 1947 году Эйнштейн писал Максу Борну, одному из основоположников квантовой механики: “В наших научных взглядах мы развились в антиподы. Ты веришь в играющего в кости Бога, а я — в полную закономерность объективно сущего... В чем я твердо убежден, так это в том, что в конце концов остановятся на теории, в которой закономерно связанными будут не вероятности, но факты” (79, с. 435). Как показало дальнейшее развитие науки, Эйнштейн оказался прав.
Однако существование двух принципиально различных направлений в подходе к квантовой физике характеризует кризис в понимании физической реальности, который длится вот уже более полувека. Буквально до последнего времени дискуссии подлежали следующие вопросы (26. ч. 1, с, 9).
1. Что такое волновая функция в уравнениях Шредингера и Дирака, то есть какое физическое поле она представляет?
2. Существуют ли детерминизм и причинность в области микромира?
3. Каков образ квантовой частицы?
4. Полна ли квантовая механика?
На все эти вопросы удалось найти ответ только в последнее десятилетие уходящего века.
В 1965 году доктор Джон С. Белл опубликовал работу, которую физики кратко называют "теоремой Белла” (94,с.181).
Теорема Белла утверждает: если некоторая объективная Вселенная существует и если уравнения квантовой механики структурно подобны этой Вселенной, то между двумя частицами, когда-либо входившими в контакт, существует некоторый вид нелокальной связи.
Стоит напомнить, что классический тип нелокальной связи — это “магическая” связь.
Все доквантовые модели мира, включая теорию относительности Эйнштейна, предполагали, что любые корреляции (взаимозависимости) требуют связей. В ньютоновской физике — связь механическая и детерминистская; в термодинамике — механическая и статистическая; в электромагнетизме эта связь выступает как пересечение или взаимодействие полей; в теории относительности — как результат искривления пространства, но в любом случае корреляция предполагает некоторую связь. В качестве простой модели мира все физики доквантовой эпохи принимали биллиардный стол. Если лежащий на нем шар приходит в движение, причина лежит в механике (удар другого шара), полях (воздействие электромагнитного поля толкает шар в определенном направлении) или геометрии (стол наклонен). Но без причины шар двигаться не будет(36,с.12).
Однако Белл математически очень точно доказал, что должны иметь место нелокальные эффекты, если квантовая механика действует в наблюдаемом мире. То есть, если на биллиардном столе шар А внезапно поворачивается по часовой стрелке, то в этот же момент на другом конце стола шар Б так же внезапна повернется против часовой стрелки.
Действительно, экспериментально был открыт ряд эффектов, объяснить которые можно было только влиянием некой потусторонней силы. Например, парадокс Эйнштейна—Подольского—Розена (ЭПР-парадокс), Когда ученые в сильном магнитном поле расщепили частицу атома, обнаружилось, что разлетающиеся осколки мгновенно имеют информацию друг о друге. Между осколками распавшейся частицы сохраняется связь, вроде переносной рации, так что каждый в любой момент знает, где находится другой и что с ним происходит (76, с. 232). Поскольку никакого разумного объяснения этому факту не было, среди научной общественности практически единодушно существовало мнение, что ЭПР-парадокс имеет “метафизический” характер (109, с. 21).
В теореме Белла, которую весьма тщательно проверил физик Д. Бом, нет ошибок, а подтверждающие ее эксперименты были многократно повторены доктором А. Аспектом из Орсе (96, с. 279). Причем нелокальные корреляции так же четко проявлялись в эксперименте, как и в уравнениях (в теории).
Теорема Белла поставила ученых перед выбором между двумя “неприятностями”; либо примириться с фундаментальной неопределенностью квантовой механики, либо, сохранив классическое представление о причинности, признать, что в природе действует нечто вроде телепатии (эйнштейновская нелокальность).
С точки зрения Бома, эксперименты Аспекта поддержали позиции нелокальных скрытых переменных, существование которых предположил Эйнштейн.
Учитывая необычность и важность теоремы Белла, подтвержденной экспериментально, еще раз подчеркнем ее суть: не существует изолированных систем; каждая частица Вселенной находится в “мгновенной” связи со всеми остальными частицами. Вся Система, даже если ее части разделены огромными расстояниями и между ними отсутствуют сигналы, поля, механические силы, энергия и т. д., функционирует как Единая Система (96, с. 278). При этом мгновенная “связь”, описываемая теоремой Белла, не требует затрат энергии.
Доктор Джек Саффатти высказал предположение, что средством белловской связи должна служить информация. А физик доктор Э, Г. Уокер считал, что неизвестным элементом, передвигающимся быстрее света и соединяющим систему воедино, является “Сознание”.
Забегая вперед, укажем, что, согласно современным научным исследованиям, Сознание следует понимать как высшую форму развития информации — творящую информацию, Носителем информации в Тонком Мире являются торсионные поля, которые распространяются мгновенно и без затрат энергии, И сегодня, например, после разработки концепции физического вакуума ЭПР-парадокс объясняется как особого рода торсионное взаимодействие (109, с. 8). А это предполагает связь торсионного взаимодействия с эйнштейновской нелокальностью. Совсем недавно еще раз были поставлены корректные эксперименты (Беннет, Зайлинер), доказывающие обоснованность ЭПР-парадокса и подтверждающие идею о том, что сознание есть физическая реальность (114,с, 25).
2.1.7. Море Дирака
Создателям квантовой механики поначалу было не до эфира, им хватало забот с непривычным новым миром, где энергия дробилась на порции, волна оказывалась частицей, а частица — волной.
Но теория относительности и теория квантовой механики должны были встретиться и начать как-то учитывать открытия, сделанные каждой из них, уже потому, что элементарные частицы способны двигаться почти со скоростью света, а фотоны же вообще движутся только со световой скоростью.