Чтение онлайн

на главную

Жанры

Физика веры

Тихоплав Татьяна Серафимовна

Шрифт:
Частица и античастица

Первым начал процесс объединения двух теорий английский физик Поль Дирак. Частиц тогда — к 1928 году — было известно только три: фотон, электрон и протон. Фотон — элементарная частица, квант электромагнитного излучения (в узком смысле — света); электрон — элементарная частица, обладающая положительной энергией и отрицательным (как условились считать) зарядом, был открыт Томсоном в 1891 году; протон — стабильная элементарная частица, ядро атома водорода.

Самым “старым” был электрон. С ним физики были знакомы уже десятки лет. Понятно, что с электронов и следовало начинать.

Поль Дирак составил уравнение,

которое описывало движение электронов с учетом законов и квантовой механики и теории относительности и получил неожиданный результат. Формула для энергии электрона давая два решения: одно соответствовало уже знакомому электрону, частице с положительной энергией, другое — частице, у которой энергия была отрицательной. В квантовой теории поля состояние частицы с отрицательной энергией интерпретируется как состояние античастицы, обладающей положительной энергией и положительным зарядом (18, с. 163).

Дирак обратил внимание на то, что нереальные частицы с отрицательной энергией возникают из своих положительных “антиблизнецов”. Используя результаты экспериментов швейцарского ученого В. Паули, Дирак сделал потрясающий вывод: “Этот океан (физический вакуум) заполнен электронами без предела для величины отрицательной энергии, и поэтому нет ничего похожего на дно в этом электронном океане” (69, с. 16). Сравнение с океаном (или морем) оказалось удачным. Вакуум нередко называют “морем Дирака”. Мы не наблюдаем электронов с отрицательной энергией именно потому, что они образуют сплошной невидимый фон, на котором происходят все мировые события (83, с. 16).

Чтобы лучше понять это положение, рассмотрим такую аналогию. Человеческий глаз видит только то, что движется относительно него. Очертания неподвижных предметов мы различаем только потому, что человеческий зрачок сам постоянно движется, А многие животные (например, лягушка), не обладающие таким аппаратом зрения, способны, не двигаясь, видеть только движущиеся предметы.

Все мы, живущие в “море Дирака”, оказываемся по отношению к нему в положении лягушки, застывшей на берегу пруда в ожидании неосторожного насекомого. Летящее насекомое она увидит и не шелохнувшись, а пруд в безветренную погоду без бегущей по воде ряби для нее невидим. Так и для нас: фоновые электроны мы не видим, а в роли насекомого выступают редкие по сравнению с фоновыми электронами частицы с положительной энергией.

В 1956 году П. Дирак приезжал в Москву и выступил там с лекцией “Электроны и вакуум”. Он напомнил в ней, что мы не так уж редко встречаемся в физике с объектами, вполне реально существующими и тем не менее до случая никак себя не проявляющими. Например, невозбужденный атом, находящийся в состоянии наименьшей энергии. Он не излучает, значит, если на него никак не действовать, он останется ненаблюдаемым. В то же время мы точно знаем, что и такой атом не представляет собой нечто неподвижное: электроны движутся вокруг ядра, и в самом ядре идут обычные процессы.

Океан ненаблюдаем только до тех пор, пока на него не подействуют определенным образом. Когда же в “море Дирака” попадает, скажем, богатый энергией световой квант — фотон, то он при определенных условиях заставляет “море” выдать себя, выбивая из него один из многочисленных электронов с отрицательной энергией. И, как утверждает теория, родятся сразу две частицы, которые можно будет обнаружить экспериментально: электрон с положительной энергией и отрицательным электрическим зарядом и антиэлектрон тоже с положительной энергией, но еще и с положительным зарядом.

В подтверждение теории Дирака в 1932 году американский физик К. Д. Андерсон экспериментально обнаружил антиэлектрон в космических лучах и назвал эту частицу позитроном (18, с, 59).

Теперь уже доказано, что для каждой элементарной частицы в нашем мире существует и античастица.

Все это не придумано, а открыто, обнаружено, тысячекратно проверено и перепроверено, А теоретической основой для открытий послужил дираковский физический вакуум.

Знаменитый физик В. Гейзенберг подчеркивал принципиальное значение работ Дирака над проблемой вакуума. До них считалось, что вакуум есть чистое “ничто”, которое, что бы с ним ни делать, каким преобразованиям ни подвергать, измениться не способно, всегда оставаясь все тем же ничем. Теория Дирака открыла путь к преобразованиям вакуума, в которых прежнее “ничто” обращалось бы во множество пар частица-античастица.

Виртуальные частицы

Одной из особенностей вакуума является наличие в нем полей с энергией, равной нулю и без реальных частиц. Это электромагнитное поле без фотонов, это пионное поле без пи-мезонов, электронно-позитронное поле без электронов и позитронов.

Но раз есть поле, то оно должно колебаться. Такие колебания в вакууме часто называют нулевыми потому, что там нет частиц. Удивительная вещь; колебания поля невозможны без движения частиц, но в данном случае колебания есть, а частиц нет! Как это можно объяснить? Физики считают, что при колебаниях рождаются и исчезают кванты. Колеблется электромагнитное поле — рождаются и пропадают фотоны, колеблется пионное поле — появляются и исчезают пи-мезоны и т, д. Физика сумела найти компромисс между присутствием и отсутствием частиц в вакууме. Компромисс такой: частицы рождаются при нулевых колебаниях, живут очень недолго и исчезают, Однако, получается, что частицы, рождаясь из “ничего” и приобретая при этом массу и энергию, нарушают тем самым неумолимый закон сохранения массы и энергии. Тут вся суть в том “сроке жизни”, который отпущен частицам: он настолько краток, что “нарушение” законов можно лишь вычислить теоретически, но экспериментально это наблюдать нельзя. Родилась частица из “ничего” и тут же умерла. Например, время “жизни” мгновенного электрона, примерно, 10-21 секунды, а мгновенного нейтрона 10-24 секунды. Обычный же свободный нейтрон живет минуты, а в составе атомного ядра даже неопределенно долго, как и электрон, если его не трогать.

Поэтому частицы, живущие так мало, что этого в каждом конкретном случае и заметить нельзя, назвали, в отличие от обычных, реальных, — виртуальными, В точном переводе с латыни — возможными. Но считать, что данные частицы только возможны, а па самом деле их нет — неверно. Эти “возможные” частицы в вакууме вполне реально воздействуют, как это наблюдается в точных экспериментах, на вполне реальные образования из безусловно реальных частиц и даже на микроскопические тела (69, с. 67). И если отдельную виртуальную частицу физика обнаружить не может, то суммарное их воздействие на обычные частицы фиксируется отлично.

Наблюдать воздействие вакуумных виртуальных частиц оказалось возможно не только в опытах, где изучаются взаимодействия элементарных частиц, но и в эксперименте с макротелами- Две пластины, помещенные в вакуум и приближенные друг к другу, под ударами виртуальных частиц начинают притягиваться. Этот факт был открыт в 1965 году голландским теоретиком и экспериментатором Гендриком Казимиром.

По сути, абсолютно все реакции, все взаимодействия между реальными элементарными частицами происходят при непременном участии вакуумного виртуального фона, на который элементарные частицы, в свою очередь, тоже влияют.

Поделиться:
Популярные книги

Сирота

Ланцов Михаил Алексеевич
1. Помещик
Фантастика:
альтернативная история
5.71
рейтинг книги
Сирота

Ритуал для призыва профессора

Лунёва Мария
Любовные романы:
любовно-фантастические романы
7.00
рейтинг книги
Ритуал для призыва профессора

Младший сын князя

Ткачев Андрей Сергеевич
1. Аналитик
Фантастика:
фэнтези
городское фэнтези
аниме
5.00
рейтинг книги
Младший сын князя

Барон диктует правила

Ренгач Евгений
4. Закон сильного
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Барон диктует правила

Мастер 3

Чащин Валерий
3. Мастер
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер 3

Шведский стол

Ланцов Михаил Алексеевич
3. Сын Петра
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Шведский стол

Сердце Дракона. Том 12

Клеванский Кирилл Сергеевич
12. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.29
рейтинг книги
Сердце Дракона. Том 12

Все не случайно

Юнина Наталья
Любовные романы:
современные любовные романы
7.10
рейтинг книги
Все не случайно

Не возвращайся

Гауф Юлия
4. Изменщики
Любовные романы:
5.75
рейтинг книги
Не возвращайся

Не грози Дубровскому!

Панарин Антон
1. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому!

Звезда сомнительного счастья

Шах Ольга
Фантастика:
фэнтези
6.00
рейтинг книги
Звезда сомнительного счастья

Ненастоящий герой. Том 1

N&K@
1. Ненастоящий герой
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Ненастоящий герой. Том 1

Сумеречный стрелок

Карелин Сергей Витальевич
1. Сумеречный стрелок
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный стрелок

Царь поневоле. Том 1

Распопов Дмитрий Викторович
4. Фараон
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Царь поневоле. Том 1