Чтение онлайн

на главную

Жанры

Фундаментальные алгоритмы и структуры данных в Delphi

Бакнелл Джулиан М.

Шрифт:

Листинг 6.1. Метод средних квадратов в действии

var

MidSqSeed : integer;

function GetMidSquareNumber : integer;

var

Seed : longint;

begin

Seed := longint(MidSqSeed) * MidSqSeed;

MidSqSeed := (Seed div 100) mod 10000;

Result := MidSqSeed;

end;

К сожалению, с приведенным алгоритмом связано несколько больших проблем, которые исключают его применение в практических целях. Вернемся к нашему примеру с четырехзначными случайными числами. Предположим, что в последовательности нам встретилось число меньше 10. При вычислении квадрата будет получено число

меньше 100. Это, в свою очередь, означает, что следующим числом в последовательности будет 0 (поскольку мы возьмем четыре средние цифры из числа 000000хх). Это число также меньше 10, следовательно, все последующие числа в последовательности будут равны 0. Вряд ли кто-то может сказать, что такая последовательность будет случайной! (Если в качестве начального взять число 1234, то до попадания в 0 последовательность будет содержать 55 чисел.) Кроме того, если начать, например, с числа 4100, последовательность будет состоять из 8100, 6100, 2100, 4100 и так до бесконечности. Существуют и другие патологические последовательности, на которые очень легко натолкнуться и очень трудно избежать.

Метод средних квадратов позволяет легко генерировать случайные числа на основе 16-битного целого числа. Возведение 16-битного числа в квадрат дает 32-битное число. Затем для вычисления средних 16-бит нужно всего лишь сдвинуть полученный результат на 8 бит вправо и выполнить операцию AND с числом $FFFF. Тем не менее, даже в этом случае алгоритм средних квадратов будет давать бесполезные результаты. После 50-60 случайных чисел алгоритм приводит к генерации нулей или попадает в цикл. То же самое происходит и для 32-битных чисел. В общем случае, несмотря простоту, применение метода средних квадратов вследствие его недостатков предельно ограничено.

Линейный конгруэнтный метод

Следующий большой шаг в разработке генераторов случайных чисел был сделан Д. Лемером (D.H. Lehmer) в 1949 году. Предложенный им генератор носит название линейного конгруэнтного метода (linear congruential method). Выберите три числа m, a и c и начальное число Х(_0_). Для генерации последовательности случайных чисел используется следующая формула:

Х(_n+1_) = (аХ(_n_) + с) mod m

Операция взятия по модулю m (mod m) представляет собой вычисление остатка от деления числа на m, например, 24 mod 10 = 4.

При удачном выборе начальных чисел генерируемая последовательность будет содержать случайные числа. Например, стандартный генератор случайных чисел в Delphi использует значения a = 134775813 ($8088405), c = 1 и m = 2(^32^), а значение Х(_0_) выбирается самим пользователем. (Значение начального числа содержится в глобальной переменной RandSeed. Его можно задавать напрямую или использовать процедуру Randomize для вычисления его на основе показаний системных часов.)

Следует отметить, что если в двух разных точках последовательности получено одно и то же значение x, то последовательность в этих двух точках должна полностью повторяться, поскольку алгоритм детерминированный. Так как в формуле используется операция определения остатка от деления, все значения в последовательности будут меньше m, т.е. будут находиться в диапазоне от 0 до m-1. Следовательно, последовательность будет повторяться после не более чем m чисел. При неудачном выборе значения a, c и m повторение последовательности может начаться гораздо раньше. В качестве простого примера можно привести случай, когда a = 0: вся последовательность сводится к повторению значения параметра c - {c, c, c, . . .}

Каким образом можно выбрать удачные значения для a, c и m? В литературе содержится немало размышлений, описаний и доказательств. Как правило, значение параметра m выбирается как можно больше, чтобы цикл повторяемости был также как можно большим. Нужно выбирать его, как минимум, равным размеру слова операционной системы (другими словами, для 32-разрядных операционных систем m выбирается равным 31 или 32 бита). Значение параметра а выбирается таким образом, чтобы оно было взаимно простым со значением числа m (два числа являются взаимно простыми, если их наибольший общий делитель равен 1). Значение c, как правило, берется равным 0 или 1, несмотря на то, что общее правило гласит, что должно выбираться ненулевое значение, взаимно простое со значением параметра m.

В случае если значение с равно 0, генератор называется мультипликативным линейным конгруэнтным генератором случайных чисел (multiplicative linear congruential generator). Чтобы гарантировать, что цикл повторения последовательности максимален, необходимо в качестве значения параметра m выбирать простое число. Самым известным генератором подобного рода является так называемый минимальный стандартный генератор случайных чисел (minimal standard random number generator), предложенный Стивеном Парком (Stephen Park) и Кейтом Миллером (Keith Miller) в 1988 году. Для него а = 16807, а m = 2147483647 (или 2(^31^) - 1). После разработки этого генератора было проведено большое количество статистических тестов, и генератор прошел большинство из них (несмотря на то что предложенный генератор обладает определенными нежелательными свойствами, которые мы рассмотрим чуть ниже).

Мультипликативные линейные конгруэнтные генераторы случайных чисел имеют одну аномалию: они никогда не дают числа 0. (Это объясняется тем, что, во-первых, m представляет собой простое число, во-вторых, a mod m не равно нулю, и, в-третьих, если начальное число не равно нулю, Х(_0_) mod m тоже не равно нулю.) Следовательно, если генераторы никогда не дают числа 0, их нельзя назвать случайными. На практике невозможность генерации нуля, как правило, игнорируется, - в конце концов, в 32-разрядной операционной системе это всего лишь отсутствие всего одного числа из примерно 2 миллиардов.

При реализации минимального стандартного генератора случайных чисел (как, в общем-то, и любого другого) особое внимание необходимо уделить исключению возможности возникновения переполнения, поскольку значение текущего начального числа, умноженное на а, может легко превысить максимально допустимое значение для 32-битного целого числа. Если не позаботиться об исключении переполнения, возможно возникновение ошибок, которые негативно скажутся на достаточно хорошем генераторе случайных чисел. Для обработки случаев переполнения используется метод Шрейга (Schrage) (его описание в этой книге не приводится, но его можно найти в статье Парка и Миллера [16]).

Для сравнения и тестирования различных генераторов случайных чисел будет создана иерархия классов, базовый класс которой будет содержать виртуальный метод, инкапсулирующий основные функциональные возможности генератора, в частности, генерация случайного числа с плавающей запятой в диапазоне от 0 до 1 (мы будем пользоваться переменными типа double). Этот виртуальный метод будет перекрываться в дочерних классах, что позволит генерировать случайное число в соответствии с алгоритмами дочерних классов. В базовом классе метод будет применяться для создания других типов случайных чисел, например, случайных чисел целого типа не больше определенного значения или случайного числа из определенного диапазона.

Наличие иерархии классов генераторов случайных чисел дает еще одно преимущество. Поскольку данные для генератора случайных чисел содержатся исключительно внутри самого объекта, в одном приложении можно будет использовать несколько независимых генераторов. Стандартная функция Random имеет одно и только одно начальное значение, которое будет использоваться для всех вызовов функции в приложении. В ситуации, когда несколько различных процедур прибегают к услугам функции Random, очень сложно получить воспроизводимые результаты, поскольку отдельные вызовы будут влиять на получаемые случайные значения.

Поделиться:
Популярные книги

Измена. Не прощу

Леманн Анастасия
1. Измены
Любовные романы:
современные любовные романы
4.00
рейтинг книги
Измена. Не прощу

Неудержимый. Книга II

Боярский Андрей
2. Неудержимый
Фантастика:
городское фэнтези
попаданцы
5.00
рейтинг книги
Неудержимый. Книга II

Возвышение Меркурия. Книга 16

Кронос Александр
16. Меркурий
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 16

Измена. Осколки чувств

Верди Алиса
2. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Осколки чувств

Отборная бабушка

Мягкова Нинель
Фантастика:
фэнтези
юмористическая фантастика
7.74
рейтинг книги
Отборная бабушка

Измена. Ребёнок от бывшего мужа

Стар Дана
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Ребёнок от бывшего мужа

Неверный. Свободный роман

Лакс Айрин
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Неверный. Свободный роман

Бывшие. Война в академии магии

Берг Александра
2. Измены
Любовные романы:
любовно-фантастические романы
7.00
рейтинг книги
Бывшие. Война в академии магии

Ты нас предал

Безрукова Елена
1. Измены. Кантемировы
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Ты нас предал

В теле пацана 6

Павлов Игорь Васильевич
6. Великое плато Вита
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
В теле пацана 6

Вернуть невесту. Ловушка для попаданки 2

Ардова Алиса
2. Вернуть невесту
Любовные романы:
любовно-фантастические романы
7.88
рейтинг книги
Вернуть невесту. Ловушка для попаданки 2

Его маленькая большая женщина

Резник Юлия
Любовные романы:
современные любовные романы
эро литература
8.78
рейтинг книги
Его маленькая большая женщина

Инферно

Кретов Владимир Владимирович
2. Легенда
Фантастика:
фэнтези
8.57
рейтинг книги
Инферно

Золушка вне правил

Шах Ольга
Любовные романы:
любовно-фантастические романы
6.83
рейтинг книги
Золушка вне правил