Чтение онлайн

на главную

Жанры

Гиперпространство
Шрифт:

С точки зрения Римана, евклидова геометрия особенно бесплодна, если ее сравнить с поразительным многообразием мира. Нигде в природе мы не встречаем плоских, идеальных геометрических фигур Евклида. Горные цепи, океанские волны, облака, водовороты — отнюдь не правильные круги, треугольники и квадраты, а объекты с криволинейными поверхностями, количество изгибов которых поражает бесконечным разнообразием.

Время для революции наступило. Но кто возглавит ее и что придет на смену прежней геометрии?

Появление римановой геометрии

Риман восставал против мнимой математической точности греческой геометрии, фундамент которой, как он обнаружил, покоится на зыбучих песках интуиции и здравого смысла, а не на твердой почве логики.

Согласно Евклиду, у точки вообще нет измерения. У линии одно измерение — длина. У плоскости — два: длина и ширина. У тела — три: длина, ширина и высота. На этом все и заканчивается. Нет ничего, что имело бы четыре измерения. Эти утверждения эхом повторял философ Аристотель, вероятно, первым в мире категорически заявивший, что четвертое пространственное измерение невозможно. В трактате «О небе» он писал: «Величина, делимая в одном измерении, есть линия, в двух — плоскость, в трех — тело, и, кроме них, нет никакой другой величины, так как три суть все». Более того, в 150 г. н. э. астроном Птолемей из Александрии пошел дальше Аристотеля и в своем труде «О расстояниях» предложил первое

оригинальное «доказательство» невозможности четвертого измерения.

Сначала, предлагал он, проведем три взаимно перпендикулярные линии. Например, угол куба представляет собой три линии, перпендикулярные друг другу. Затем попробуем провести четвертую линию, перпендикулярную остальным трем. Как бы мы ни старались, утверждает Птолемей, провести четвертый перпендикуляр невозможно. По мнению Птолемея, четвертую перпендикулярную линию «нельзя измерить и определить». Таким образом, четвертое измерение невозможно.

В действительности же Птолемей доказал невозможность визуализировать четвертое измерение с помощью нашего трехмерного мозга (сегодня нам уже известно немало объектов математики, которые нельзя представить, однако их существование можно доказать). Птолемей мог бы войти в историю как человек, противостоявший двум великим идеям в науке: гелиоцентрической Солнечной системе и четвертому измерению.

За прошедшие с тех пор века появлялось немало математиков, с пеной у рта отвергавших четвертое измерение. В 1685 г. Джон Уоллис (Валлис) высказывался против этой концепции, называя ее «Чудовищем в мире природы, еще менее возможным, чем химера или кентавр… Длина, ширина и высота исчерпывают пространство. Никакому воображению не под силу представить четвертое пространственное измерение помимо этих трех» [11] . В течение нескольких тысяч лет математики повторяли эту роковую ошибку: что четвертое измерение не существует по той причине, что мы не в состоянии вообразить его себе.

11

Джон Валлис (Уоллис), Der Barycentrische Calcul, Leipzig, 1827, p. 184.

Единство всех физических законов

Решительное отступление от евклидовой геометрии произошло, когда Гаусс поручил студенту Риману подготовить доклад об «основах геометрии». Гаусс всерьез заинтересовался вопросом, сумеет ли его ученик разработать альтернативу евклидовой геометрии. (За несколько десятилетий до этого Гаусс сам в личных беседах выражал всяческие сомнения относительно евклидовой геометрии. Он даже упоминал в разговорах с коллегами гипотетических «книжных червей», живущих исключительно в двумерном пространстве. Он говорил, что это распространяется на геометрию многомерного пространства. Но будучи крайне консервативным человеком, Гаусс никогда не публиковал своих работ по многомерности, зная, какой взрыв негодования они вызовут у ограниченной, реакционно настроенной «старой гвардии». Гаусс презрительно окрестил их «беотийцами» — по названию одной из народностей Греции, представителей которой считали умственно недоразвитыми [12] .)

12

Хотя Риману обычно приписывают роль движущей творческой силы, в конце концов сокрушившей рамки евклидовой геометрии, по праву человеком, который открыл геометрию высших измерений, должен был стать престарелый наставник Римана, сам Гаусс.

В 1817 г., почти за десять лет до рождения Римана, Гаусс выразил свое глубокое недовольство евклидовой геометрией. В пророческом письме к другу, астроному Генриху Ольберсу, он недвусмысленно заявил, что евклидова геометрия математически несовершенна.

В 1869 г. математик Джеймс Дж. Сильвестр писал, что Гаусс всерьез обдумывал возможность существования многомерных пространств. Гаусс представлял себе свойства существ, названных им «книжными червями», способных жить на двумерных листах бумаги. Затем он распространил свои выводы на «существ, способных представить себе пространство с четырьмя и более измерениями» (процитировано в: Линда Далримпл Хендерсон «Четыре измерения и неевклидова геометрия в современном искусстве» (Linda Dalrymple Henderson, The Fourth Dimension and Non-Euclidean Geometry in Modern Art, Princeton, N. J.: Princeton University Press, 1983), c. 19).

Но если Гаусс сформулировал теорию многомерности, на 40 лет опередив всех, тогда почему же он упустил поистине историческую возможность избавиться от уз трехмерной евклидовой геометрии? Историки отмечают присущую Гауссу консервативность в работе, общественной и личной жизни. Он никогда не покидал пределов Германии и почти всю жизнь провел в одном городе. Это обстоятельство отразилось на его профессиональной деятельности.

В примечательном письме, написанном в 1829 г., Гаусс признавался своему другу Фридриху Бесселю, что никогда не опубликует свою работу, посвященную неевклидовой геометрии, из опасения, что она вызовет споры в кругах «беотийцев». Математик Морис Клайн писал: «Он [Гаусс] заявлял в письме к Бесселю от 27 января 1829 г., что, вероятно, никогда не опубликует результаты своих исследований этого предмета, поскольку опасается насмешек или, как выразился сам Гаусс, боится навлечь недовольство „беотийцев“, образно названных в память о недалеком греческом народе» («Математика и физический мир» (Mathematics and the Physical World, New York: Crowell, 1959, p. 449)). Гаусс так робел перед старой гвардией, узколобыми «беотийцами», свято верившими в три измерения, что предпочел сохранить в тайне лучший из своих трудов.

В 1869 г. Сильвестр в интервью с биографом Гаусса Сарториусом фон Вальтерсхаузеном писал: «Этот великий человек говорил, что отложил в сторону несколько вопросов, которые анализировал, и надеялся применить к ним геометрические методы, когда его представления о пространстве станут полнее; ибо если мы можем вообразить себе существа (подобные бесконечно плоским „книжным червям“ на бесконечно тонком листе бумаги), которым известно лишь двумерное пространство, нам под силу представить себе и существа, способные оперировать четырьмя и более измерениями» (процитировано в: Хендерсон «Четыре измерения и неевклидова геометрия в современном искусстве», с. 19).

Гаусс писал Ольберсу: «Я все больше убеждаюсь, что (физическую) неизбежность нашей (евклидовой) геометрии невозможно доказать, по крайней мере средствами человеческого разума и доступно для понимания человеческим разумом. Возможно, в другой жизни мы сумеем получить представление о природе пространства, которое сейчас остается для нас недосягаемым. А до тех пор нам следует ставить геометрию в один ряд не с арифметикой, как это делается априори, а с механикой» (процитировано в: Морис Клайн «Математическая мысль от древности до наших дней» (Morris Kline, Mathematical Thought from Ancient to Modern Times, New York: Oxford University Press, 1972), c. 872).

Гаусс относился к евклидовой геометрии с таким подозрением, что даже провел оригинальный эксперимент, чтобы проверить ее. Вместе с помощниками он поднялся на три горных вершины — Брокен, Хохехаген и Инзельсберг. С каждой из них были отчетливо видны две другие вершины. Построив между вершинами треугольник,

Гаусс смог экспериментальным путем измерить его внутренние углы. Если евклидова геометрия верна, тогда сумма этих углов должна составлять 180°. К своему разочарованию, Гаусс обнаружил, что сумма углов действительно равна 180° (плюс-минус 15 минут). Примитивность измерительного оборудования не дала ему убедительно доказать, что Евклид заблуждался. (Сегодня нам известно, что этот эксперимент следовало проводить между тремя разными звездными системами, чтобы выявить значимые отклонения от евклидова результата.)

Следует также указать, что математики Николай Иванович Лобачевский и Янош Бойяи независимо друг от друга открыли неевклидову математику для изогнутых поверхностей. Но их построения ограничивались обычными низшими измерениями.

Риман был в ужасе. Этого застенчивого, робкого человека, впадающего в панику при мысли о публичных выступлениях, наставник попросил прочитать перед целым факультетом доклад об одной из самых сложных математических проблем столетия.

Следующие несколько месяцев Риман усердно разрабатывал теорию многомерности, напрягая все свои силы и находясь на грани нервного срыва. И без того плачевное положение усугублялось финансовыми проблемами. Чтобы обеспечивать близких, ему приходилось заниматься низкооплачиваемым репетиторством. Кроме того, Риман был вынужден отвлекаться на поиски объяснения физических проблем. Особенно часто он помогал профессору Вильгельму Веберу проводить эксперименты в новой увлекательной сфере — исследованиях электричества.

Конечно, электричество было известно и в древности — в виде искр и молний. Но в начале XIX в. это явление заняло центральное место в исследованиях физиков. В частности, внимание ученых привлекло то, что при прохождении тока по проводу, лежащему поверх компаса, стрелка компаса приводится в движение. И наоборот: движение магнитного стержня относительно провода может вызвать возникновение электрического тока в проводе. (Это явление называется законом Фарадея, на его принципах основаны все современные электрогенераторы и трансформаторы, следовательно, во многом он определяет основы современной техники и технологии.)

С точки зрения Римана, этот феномен указывал на то, что электричество и магнетизм — проявления одной и той же силы. Вдохновленный новыми открытиями, Риман был убежден, что мог бы дать математическое объяснение, способное объединить электричество и магнетизм. Он с головой ушел в работу в лаборатории Вебера, уверенный, что с помощью математики удастся добиться полного понимания действия этих сил.

Но, поскольку Риман был обременен подготовкой к публичному докладу о «началах геометрии», обеспечением семьи и проведением научных экспериментов, здоровье в конце концов подвело его, и в 1854 г. он пережил нервный срыв. Позднее он писал отцу: «Исследования единства всех физических законов настолько увлекли меня, что, когда тема пробного доклада была мне объявлена, я насилу оторвался от исследовательской работы. Затем, отчасти из-за размышлений о ней, отчасти ввиду постоянного пребывания в помещении в эту скверную погоду, я занемог» [13] . Это письмо имеет большое значение, так как ясно свидетельствует, что даже во время многомесячной болезни Риман твердо верил, что откроет «единство всех физических законов» и что математика со временем проложит путь к этому объединению.

13

Процитировано в: Белл «Математики», с. 497.

Сила = геометрия

Несмотря на постоянные болезни, Риман в конечном счете изменил бытующие представления о значении силы. Еще со времен Ньютона ученые считали силу мгновенным взаимодействием удаленных друг от друга тел. Физики называли ее «дальнодействием», это означало, что некое тело способно оказывать мгновенное влияние на движение удаленных от него тел. Безусловно, ньютонова механика могла описать движение планет. Но на протяжении веков критики утверждали, что «дальнодействие» не является естественным, так как оно означало бы, что одно тело способно менять направление движения другого без соприкосновения с ним.

Риман предложил совершенно новую физическую картину. Ему представилось племя двумерных существ, подобных «книжным червям» Гаусса и живущих на листе бумаги. Но в отличие от Гаусса Риман населил этими «книжными червями» скомканныйлист бумаги [14] . Что должны думать такие существа о мире, в котором они живут? Риман сообразил, что, с их точки зрения, этот мир остается совершенно плоским. Так как тела этих книжных червей тоже искривлены, они и не замечают, что их мир искажен. Однако Риман утверждал: при попытке переместиться по этому скомканному листу бумаги книжные черви ощутят воздействие таинственной, незримой силы, которая помешает им ползти по прямой. Им придется отклоняться вправо или влево каждый раз, когда впереди окажется очередная складка листа.

14

Британский математик Уильям Клиффорд, который переводил знаменитую речь Римана для журнала Natureв 1873 г., разъяснил многие основополагающие труды Римана и был, вероятно, первым, кто развил его мысль о том, что искривление пространства вызывает возникновение электромагнитного взаимодействия, придав тем самым идеям Римана более четкую форму. Клиффорд высказал предположение, что эти два таинственных открытия в математике (многомерные пространства) и физике (электричество и магнетизм) — в сущности, одно и то же и что электромагнитное взаимодействие вызвано искривлением многомерного пространства.

Так впервые за 50 лет до Эйнштейна была высказана догадка о том, что сила — не что иное, как искривление самого пространства. Предположение Клиффорда о том, что электромагнетизм вызывают колебания в четвертом измерении, предшествовало работе Теодора Калуцы, который также пытался объяснить электромагнетизм высшими измерениями. Таким образом, Клиффорд и Риман предвосхитили открытия ученых XX в., догадавшись, что многомерное пространство способно дать простое и элегантное описание взаимодействий. Впервые было верно оценено истинное физическое значение высших измерений — как теории пространства,дающей нам объединяющую картину взаимодействий.

Эти пророческие взгляды были изложены математиком Джеймсом Сильвестром, который в 1869 г. писал: «Мистер Клиффорд позволил себе высказать примечательные предположения касательно способности человека на основании некоторых необъясненных явлений света и магнетизма сделать вывод о том, что наше трехмерное пространство подвергается воздействию пространства четырех измерений… аналогично бумаге, которую комкают» (процитировано в: Хендерсон «Четвертое измерение и неевклидова геометрии в современном искусстве», с. 19).

В 1870 г. в статье с интригующим названием «О пространственной теории вещества» Клиффорд напрямую пишет, что «эта разновидность искривления пространства — то, что в действительности происходит при явлении, которое мы называем движением материи,будь она осязаемой или неосязаемой». (Клиффорд Уильям «О пространственной теории вещества» (William Clifford, On the Space-Theory of Matter, Proceedings of the Cambridge Philosophical Society 2, 1876: 157–158).

Поделиться:
Популярные книги

Бальмануг. Невеста

Лашина Полина
5. Мир Десяти
Фантастика:
юмористическое фэнтези
5.00
рейтинг книги
Бальмануг. Невеста

Егерь

Астахов Евгений Евгеньевич
1. Сопряжение
Фантастика:
боевая фантастика
попаданцы
рпг
7.00
рейтинг книги
Егерь

Мастер 8

Чащин Валерий
8. Мастер
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Мастер 8

Секретарша генерального

Зайцева Мария
Любовные романы:
современные любовные романы
эро литература
короткие любовные романы
8.46
рейтинг книги
Секретарша генерального

Феномен

Поселягин Владимир Геннадьевич
2. Уникум
Фантастика:
боевая фантастика
6.50
рейтинг книги
Феномен

Эра Мангуста. Том 2

Третьяков Андрей
2. Рос: Мангуст
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Эра Мангуста. Том 2

Имперец. Том 1 и Том 2

Романов Михаил Яковлевич
1. Имперец
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Имперец. Том 1 и Том 2

Ты не мой Boy 2

Рам Янка
6. Самбисты
Любовные романы:
современные любовные романы
короткие любовные романы
5.00
рейтинг книги
Ты не мой Boy 2

Право налево

Зика Натаэль
Любовные романы:
современные любовные романы
8.38
рейтинг книги
Право налево

Треск штанов

Ланцов Михаил Алексеевич
6. Сын Петра
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Треск штанов

Изгой Проклятого Клана. Том 2

Пламенев Владимир
2. Изгой
Фантастика:
попаданцы
аниме
фэнтези
фантастика: прочее
5.00
рейтинг книги
Изгой Проклятого Клана. Том 2

Повелитель механического легиона. Том VIII

Лисицин Евгений
8. Повелитель механического легиона
Фантастика:
технофэнтези
аниме
фэнтези
5.00
рейтинг книги
Повелитель механического легиона. Том VIII

Идеальный мир для Лекаря 21

Сапфир Олег
21. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 21

Изгой. Пенталогия

Михайлов Дем Алексеевич
Изгой
Фантастика:
фэнтези
9.01
рейтинг книги
Изгой. Пенталогия