Чтение онлайн

на главную

Жанры

Гиперпространство
Шрифт:

Математиков тоже с давних пор интриговали альтернативные формы логики и невероятная геометрия, бросающая вызов всем условностям и здравому смыслу. К примеру, математик Чарльз Лютвидж Доджсон, преподававший в Оксфордском университете, порадовал не одно поколение школьников книгами, публикуя их под псевдонимом Льюис Кэрролл и вплетая в текст необычные математические концепции. Падая в кроличью нору или проходя сквозь зеркало, Алиса попадает в Страну чудес — удивительное место, где Чеширский кот исчезает, оставляя только улыбку, волшебные грибы превращают детей в великанов, а Болванщики празднуют «дни нерождения». Зеркало каким-то образом соединяет мир Алисы с другой страной, где все говорят загадками и здравый смысл не такой уж и здравый.

Отчасти источником вдохновения для Льюиса Кэрролла послужили идеи, скорее всего, почерпнутые у великого немецкого математика XIX в. Георга Бернхарда Римана,

первым заложившего математические основы геометрии многомерных пространств. Риман изменил ход развития математики в следующем веке, продемонстрировав, что эти вселенные, какими бы диковинными они ни казались непосвященному, абсолютно самосогласованны и подчиняются своей внутренней логике. Для иллюстрации одной из этих идей возьмите достаточно толстую стопку листов бумаги. А теперь представьте, что каждый лист — это целый мир, который подчиняется своим физическим законам, отличным от законов всех прочих миров. Тогда наша Вселенная — не единственная в своем роде, а один из множества возможных параллельных миров. Разумные существа могут населять любую из этих плоскостей, абсолютно не подозревая о существовании других, им подобных. На одном листе может размещаться пасторальная английская провинция Алисы. На другом — диковинная Страна чудес, населенная вымышленными существами.

Как правило, на каждой из этих параллельных плоскостей жизнь продолжается независимо от жизни на других плоскостях. Но в отдельных случаях плоскости пересекаются, на краткий миг рвется сама ткань пространства, в итоге между двумя вселенными открывается дыра, или проход. Подобно «червоточинам», возникающим в сериале «Звездный путь. Дальний космос девять», эти проходы дают возможность путешествовать между мирами, служат космическими мостами, соединяющими две разные вселенных или две разные точки в пределах одной Вселенной (рис. 1.2). Неудивительно, что Кэрролл убедился: дети гораздо восприимчивее к таким возможностям, нежели взрослые, со временем демонстрирующие в своих представлениях о пространстве и логике все более явную косность. По сути дела, риманова теория многомерности в изложении Льюиса Кэрролла стала неотъемлемой частью детской литературы и фольклора и за несколько десятилетий породила немало других классических образов детской литературы, в том числе Страну Оз Дороти и Нетландию Питера Пэна.

Рис. 1.2. «Червоточины» способны соединять вселенную с самой собой, вероятно, предоставляя возможность межзвездных путешествий. Поскольку «червоточины» могут соединять два разных временных периода, с их помощью можно также перемещаться во времени. Кроме того, «червоточины» могут соединять бесконечные ряды параллельных вселенных. Есть надежда, что теория гиперпространства позволит определить, возможно ли физическое существование «червоточин» или же это просто математический курьез.

Однако в отсутствие какого бы то ни было экспериментального подтверждения или убедительной физической мотивации этим теориям параллельных миров как отрасли науки грозила опасность зачахнуть. На протяжении двух тысячелетий ученые изредка обращались к понятию многомерности, только чтобы отмести его как не подлежащую проверке и, следовательно, абсурдную идею. Хотя с математической точки зрения риманова геометрия представляла интерес, ее отвергли как бесполезную, несмотря на всю продуманность. Ученые, отважившиеся рискнуть своей репутацией и обратиться к многомерности, вскоре обнаруживали, что над ними потешается все научное сообщество. Многомерное пространство стало последним прибежищем мистиков, оригиналов и шарлатанов.

В этой книге мы изучим труды мистиков-первопроходцев, главным образом потому, что они изобрели остроумные способы, помогающие неспециалистам «визуализировать» возможный вид многомерных объектов. Эти хитрости оказались полезными для понимания того, как теории высших измерений могут быть восприняты широкой аудиторией.

Кроме того, изучая труды этих ранних мистиков, мы отчетливее понимаем, чего недоставало их исследованиям. Мы видим, что в их умозаключениях отсутствовали две важные составляющие: физическая и математическая основа. Рассматривая их с позиций современной физики, теперь мы понимаем, что недостающая физическаяоснова — это упрощение законов природы в гиперпространстве и возможность объединения всех взаимодействий природы с помощью исключительно геометрических параметров. Недостающая математическаяоснова называется теорией

поля,это универсальный математический язык теоретической физики.

Теория поля — язык физики

Понятие полей впервые ввел выдающийся британский ученый XIX в. Майкл Фарадей. Сын небогатого кузнеца, Фарадей был гением-самоучкой, ставившим сложные опыты с электричеством и магнетизмом. Он представлял силовые линии, которые, подобно длинным побегам ползучего растения, исходят во все стороны от частиц с электрическим и магнитным зарядом и заполняют все пространство. Благодаря своим приборам Фарадей мог измерить силу линий, исходящих от источников магнитного или электрического заряда в любой точке своей лаборатории. Таким образом, он присваивал этой или любой Другой точке в пространстве ряд параметров, таких как величина и направление силы. Всю совокупность этих параметров в любой точке пространства он рассматривал как единое Целое и ввел для нее термин «поле». (Известна одна история из жизни Майкла Фарадея. Когда он уже достиг известности, слава его простиралась так широко, что его лабораторию часто посещали любопытствующие зрители. Однажды один из них спросил, в чем польза от работы Фарадея, и тот ответил: «А в чем польза от ребенка? Он вырастает и становится взрослым человеком». Однажды лабораторию Фарадея посетил Уильям Гладстон, в то время министр финансов Великобритании. Не имея никакого представления о науке, Гладстон саркастически осведомился у Фарадея, могут ли огромные электрические устройства в его лаборатории принести хоть какую-нибудь пользу Англии. Фарадей ответил: «Сэр, я не знаю, для чего будут применяться эти машины, зато уверен, что когда-нибудь их станут облагать налогом». В настоящее время значительная доля совокупного богатства Англии инвестируется в плоды трудов Фарадея.)

Попросту говоря, поле— это совокупность параметров, определенных в каждой точке пространства, полностью описывающих силу в этой точке. К примеру, три параметра в каждой точке пространства могут описывать напряженность и направление магнитных силовых линий. Другие три параметра где-либо в пространстве могут описывать электрическое поле. Эта идея родилась у Фарадея, когда он думал о поле, которое пашет земледелец. Поле земледельца занимает двумерный участок пространства. В каждой точке поля можно определить ряд параметров (которые описывают, к примеру, количество зерен, находящихся в этой точке). Однако поле Фарадея занимает трехмерный участок пространства. В каждой его точке можно определить шесть параметров, описывающих магнитные и электрические силовые линии.

Эффективность фарадеевой идеи поля состоит в том, что в виде поля можно представить все взаимодействия природы. Но нам понадобится еще один компонент, прежде чем мы сможем понять природу любой силы: мы должны иметь возможность записывать формулы, которым подчиняются поля. Прогресс последних ста лет в развитии теоретической физики можно обобщенно сформулировать как поиск уравнений полядля природных сил взаимодействия.

К примеру, в 60-х гг. XIX в. шотландский физик Джеймс Клерк Максвелл записал уравнения для электрического и магнитного полей. В 1915 г. Эйнштейн открыл уравнения гравитационного поля. После многочисленных неудач в 70-е гг. XX в. наконец были записаны уравнения для поля сил субатомных частиц по результатам более ранних работ Чжэньнин Янга и его ученика Р. Л. Миллса. Такие поля, обуславливающие взаимодействие всех субатомных частиц, в настоящее время называются полями Янга-Миллса.Но в том же веке физикам пришлось поломать голову над вопросом, почему уравнения субатомного поля так разительно отличаются от уравнений поля, выведенных Эйнштейном, — иными словами, почему силы ядерного взаимодействия настолько отличаются от сил гравитации. Некоторые выдающиеся умы пытались подступиться к этой задаче, но потерпели фиаско.

Возможно, причина их неудачи в том, что они попались в ловушку здравого смысла. Ограниченные тремя-четырьмя измерениями, уравнения поля для мира субатомных частиц и гравитации трудно отождествить. Преимущество теории гиперпространства заключается в том, что поля Янга-Миллса, поля Максвелла и поля Эйнштейна можно с удобством разместить внутри гиперпространственного поля. Мы видим, что эти поля укладываются в гиперпространственное поле, совпадая друг с другом точно, как детали головоломки. Еще одно преимущество теории поля в том, что она позволяет нам вычислить точные параметры энергии, при которых можно ожидать формирования в пространстве и времени «червоточин». Следовательно, в отличие от древних, у нас есть математические инструменты для строительства машин, которые когда-нибудь подчинят нам пространство и время.

Поделиться:
Популярные книги

Его наследник

Безрукова Елена
1. Наследники Сильных
Любовные романы:
современные любовные романы
эро литература
5.87
рейтинг книги
Его наследник

Сердце Дракона. Том 9

Клеванский Кирилл Сергеевич
9. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.69
рейтинг книги
Сердце Дракона. Том 9

Белые погоны

Лисина Александра
3. Гибрид
Фантастика:
фэнтези
попаданцы
технофэнтези
аниме
5.00
рейтинг книги
Белые погоны

Системный Нуб 4

Тактарин Ринат
4. Ловец душ
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Системный Нуб 4

Барон меняет правила

Ренгач Евгений
2. Закон сильного
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Барон меняет правила

(Не)нужная жена дракона

Углицкая Алина
5. Хроники Драконьей империи
Любовные романы:
любовно-фантастические романы
6.89
рейтинг книги
(Не)нужная жена дракона

Я Гордый часть 2

Машуков Тимур
2. Стальные яйца
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я Гордый часть 2

На границе империй. Том 5

INDIGO
5. Фортуна дама переменчивая
Фантастика:
боевая фантастика
попаданцы
7.50
рейтинг книги
На границе империй. Том 5

Сотник

Ланцов Михаил Алексеевич
4. Помещик
Фантастика:
альтернативная история
5.00
рейтинг книги
Сотник

Мятежник

Прокофьев Роман Юрьевич
4. Стеллар
Фантастика:
боевая фантастика
7.39
рейтинг книги
Мятежник

Не грози Дубровскому! Том II

Панарин Антон
2. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том II

Огни Эйнара. Долгожданная

Макушева Магда
1. Эйнар
Любовные романы:
любовно-фантастические романы
эро литература
5.00
рейтинг книги
Огни Эйнара. Долгожданная

Жена по ошибке

Ардова Алиса
Любовные романы:
любовно-фантастические романы
7.71
рейтинг книги
Жена по ошибке

Черный Маг Императора 9

Герда Александр
9. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 9