Голая статистика. Самая интересная книга о самой скучной науке
Шрифт:
Чем больше количество выборок, тем точнее это распределение аппроксимируется нормальным распределением. А чем больше размер каждой выборки, тем такое распределение будет уже. Чтобы проверить этот результат, давайте проведем эксперимент с реальными данными о весе реальных американцев. Мичиганский университет выполнил повторное исследование под названием Americans’ Changing Lives («Меняющаяся жизнь американцев»), которое предусматривает детальные наблюдения за несколькими тысячами взрослых американцев, в том числе и за их весом. Распределение веса слегка скошено вправо, поскольку биологически легче весить на 100 фунтов больше нормы, чем на 100 фунтов меньше нормы. Средний вес для всех взрослых в этом исследовании составляет 162 фунта.
С помощью
Чем больше размер выборки и чем больше выборок, тем точнее распределение их средних значений аппроксимируется нормальным распределением. (Чтобы обеспечить применимость центральной предельной теоремы, желательно, чтобы размер выборки был не менее 30.) Это должно быть понятно на интуитивном уровне. Большой размер выборки в меньшей степени подвержен случайным отклонениям. Выборка же из 2 человек может быть сильно скошена, если в ней окажется человек с необычайно большим (или слишком малым) весом. Напротив, на выборку из 500 человек лишь очень незначительно повлияет наличие в ней нескольких человек с нестандартным весом.
Итак, мы очень близки к тому, чтобы воплотить в жизнь все свои статистические мечты! Средние значения выборок распределены приблизительно по нормальному закону, как описано выше. Эффективность нормального распределения является следствием нашей информированности о том, какая примерно доля наблюдений окажется выше или ниже среднего значения на расстоянии, не превышающем одного среднеквадратического отклонения (68 %); на расстоянии, не превышающем двух среднеквадратических отклонений (95 %), и т. д. Это очень важная для нас информация.
Ранее в этой главе я указывал на возможность интуитивного вывода о том, что автобус с пассажирами, средний вес которых на двадцать пять фунтов превышает средний вес всех зарегистрированных участников марафона, вряд ли может быть потерявшимся автобусом с его участниками. Чтобы получить численное подтверждение своей интуитивной догадки – то есть иметь основания утверждать, что этот вывод окажется правильным в 95 (или в 99, или в 99,9) процентах случаев, – нам необходима еще одна техническая характеристика – стандартная (среднеквадратическая) ошибка.
Стандартная ошибка измеряет разброс средних значений выборок. Насколько предположительно близко они будут группироваться вокруг среднего значения совокупности? Здесь возможна некоторая путаница, поскольку вам уже известны два разных показателя разброса: среднеквадратическое (стандартное) отклонение и стандартная (среднеквадратическая) ошибка. Чтобы внести ясность в этот вопрос, нужно учитывать следующее.
1. Среднеквадратическое отклонение измеряет разброс в исходной совокупности. В данном случае оно может измерять разброс значения веса всех участников Framingham Heart Study, то есть разброс вблизи среднего значения для всех зарегистрированных участников марафона.
2. Стандартная ошибка измеряет разброс средних значений выборок. Если мы извлекли ряд выборок (в каждой по 100 значений) из Framingham Heart Study, то как будет выглядеть разброс их средних значений?
3. Вот что связывает между собой эти две концепции: стандартная ошибка является среднеквадратическим отклонением средних значений выборок! Замечательно, не правда ли?
Большая
Второе распределение, размер выборки у которого больше, сгруппировано вблизи среднего значения плотнее, чем первое. Больший размер выборки снижает вероятность того, что ее среднее значение существенно отклонится от среднего значения совокупности. Последний набор средних значений выборок получен из подмножества рассматриваемой нами совокупности (в данном случае таким подмножеством являются женщины). Поскольку значения веса женщин в этой совокупности данных разбросаны в меньшей степени, чем значения веса всех лиц в рассматриваемой нами совокупности, вполне естественно, что вес выборок, сформированных исключительно из женской совокупности, должен быть менее разбросанным, чем выборок, извлеченных из всей совокупности Americans’ Changing Lives. (Эти выборки также сгруппированы вблизи несколько отличающегося среднего значения совокупности, так как средний вес всех женщин в исследовании Americans’ Changing Lives разнится со средним весом всей совокупности, охваченной данным экспериментом.)
Нарисованная мной картина носит универсальный характер. Средние значения выборок будут группироваться вблизи среднего значения совокупности более плотно по мере увеличения размера каждой выборки (например средние значения наших выборок группировались вблизи среднего значения совокупности более плотно, когда их размер увеличился с 20 до 100). И менее плотно, когда исходная совокупность окажется более «разбросанной» (например средние значения наших выборок для всей совокупности Americans’ Changing Lives были более разбросанными, чем средние значения выборок лишь для женской совокупности).
Если вам до сих пор удавалось следить за логикой моего изложения, то формула для стандартной ошибки (SE) не потребует дополнительных разъяснений: SE = s : n, где s – среднеквадратическое отклонение для совокупности, из которой сформирована данная выборка, а n – размер выборки. Не следует, однако, слишком уповать на формулы. Не забывайте привлекать на помощь интуицию. Стандартная ошибка будет большой, когда среднеквадратическое отклонение исходного распределения велико. Большая выборка, сформированная из сильно разбросанной совокупности, также, скорее всего, окажется сильно разбросанной; большая выборка, сформированная из совокупности, плотно сгруппированной вблизи среднего значения, также, скорее всего, окажется плотно сгруппированной вблизи среднего значения. Если вернуться к примеру с весом, то можно ожидать, что стандартная ошибка для выборки, извлеченной из всей совокупности Americans’ Changing Lives, будет большей, чем стандартная ошибка для выборки, состоящей только из мужчин в возрасте от двадцати до тридцати лет. Именно поэтому среднеквадратическое отклонение (s) находится в числителе приведенной выше формулы.