Горизонты будущего
Шрифт:
Трёхмерное пространство и одномерное время превратились в относительные проявления четырёхмерного пространственно-временного континуума. Время течёт по-разному для тех, кто движется с разной скоростью. Вблизи тяжёлых предметов время замедляется, а при определённых обстоятельствах оно может и совсем останавливаться. Законы Евклидовой геометрии более не являются обязательными в масштабах Вселенной. Планеты движутся по своим орбитам не потому, что их притягивает к Солнцу сила тяготения, действующая на расстоянии, но потому, что само пространство, в котором они движутся, искривлено.
Принцип неопределённости в корне подрывал и вытеснял собою детерминизм.
«Трудно найти чёрную кошку (тёмную материю и тёмную энергию) в тёмной комнате, особенно если её там нет», – так сказал китайский философ Кун Фу-Цзы. Афоризм Конфуция звучит так: «Не делай ничего дурного даже в темноте», – и обычно трактуется как требование устранять дурные мысли прежде, чем они проявятся в уме. Высказывание Конфуция надо понимать в переносном смысле, так как это метафора. Так он говорил об учёных своего времени, которые искали не зная что и не зная где.
Сторонники Большого взрыва не обратили внимания на космические реликтовые и другие электромагнитные излучения, которые обладают огромной энергией. Взглянем на ту работу, которая совершается этими излучениями. Как известно, гравитационно-связанные звёзды уравновешиваются центробежными силами при их относительном вращении около общего центра тяжести. Кроме того, все горячие космические тела истекают плазмой, тем самым создают всесторонний космический ветер, от которого возникают реактивные силы отталкивания звёзд друг от друга, как бы далеко они ни находились (Рис. 3).
Таким образом, все звёзды, в том числе и наше Солнце, имеют собственные реактивные двигатели. Вот в этом и заключается механизм ускоренного расширения Вселенной. Звёзды отталкиваются от соседних космических тел, образуя тем самым в космическом пространстве связанную среду. Так происходит ускоренное расширение Вселенной из-за преобладающего ослабления сил гравитации при удалении звёзд друг от друга. В космических масштабах всё увеличивается давление электромагнитных излучений, которое было открыто на примере солнечного излучения ещё на пороге двадцатого века. Оказалось, давление могут создавать не только твёрдые тела, жидкости и газы.
Рис. 3. Схема расширения Вселенной. Взаимное удаление гравитационно-связанных звёзд под воздействием Духа Божьего (космического ветра).
Падая на поверхность тела, электромагнитное излучение также оказывает на него давление. Рассмотрим некоторые моменты теории светового давления. Впервые предположение о том, что давление света существует, было сделано немецким учёным Иоганном Кеплером в XVII веке. Изучая поведение комет, пролетающих вблизи Солнца, он обратил внимание на то, что хвост кометы всегда отклоняется в сторону, противоположную Солнцу. Кеплер предположил, что каким-то образом это отклонение вызывается воздействием солнечных лучей.
Теоретически существование светового давления было предсказано в XIX веке британским физиком Джеймсом Клерком Максвеллом, создавшим электромагнитную теорию и утверждавшим, что свет – это также электромагнитные колебания, и он должен оказывать давление на препятствия.
Свет – это электромагнитная волна. Она создаёт электрическое поле, под действием
Для проведения своего опыта Лебедев создал специальный прибор, который представлял собой стеклянный сосуд. Внутрь сосуда помещался лёгкий стерженёк на тонкой стеклянной нити. По краям этого стерженька были прикреплены тонкие лёгкие крылышки из различных металлов и слюды. Из сосуда выкачивался воздух. С помощью специальных оптических систем, состоящих из источника света и зеркал, пучок света направлялся на крылышки, расположенные с одной стороны стерженька. Под воздействием светового давления стерженёк поворачивался, и нить закручивалась на какой-то угол.
По величине этого угла и определяли величину светового давления. Чтобы сделать эксперимент более точным, Лебедев взял сосуд большого объёма. Крылышко он сделал из двух пар очень тонких кружочков из платины.
По одну сторону стерженька кружочки были блестящими с обеих сторон, по другую – одну из сторон покрыли платиновой чернью. Пучки света направлялись на них то с одной, то с другой стороны, чтобы уравновесить силы, действующие на крылышки. В результате давление света на крылышки было измерено. Результаты опыта подтвердили теоретические предположения Максвелла о существовании светового давления. А его величина была почти такой же, как и предсказал Максвелл.
Рис. 4. Прибор Лебедева. Впервые давление света измерил русский физик Петр Николаевич Лебедев в 1900 году
В 1907-1910 годах с помощью более точных экспериментов Лебедев измерил давление света на газы. Свет, как любое электромагнитное излучение, обладает энергией Е. Его импульс р = Ev/c2, где v – скорость электромагнитного излучения, c – скорость света. Так как v = с, то р = E/с.
Энергия фотона ?ф = hv = hc/? (1) лежит в широком диапазоне от нескольких электрон-вольт для видимого света (? ? 500 нм) до миллионов электрон-вольт для жёсткого гамма-излучения (? ? 10-3 нм).
Как и любая материальная частица, фотон имеет массу mф, которая связана с его энергией релятивистской формулой: mфc2 = ?ф. С учётом (1) находим mф = = (2).
Движущийся со скоростью c фотон обладает импульсом, величина которого связана с его энергией релятивистским соотношением pфc = ?ф, учитывающим, что масса покоя фотона равна нулю. Отсюда, с учётом (2), следует, что pф = = . (3)
Для фотона излучения, направление распространения которого задаётся волновым вектором , модуль которого k = , формулу (3) можно записать в векторном виде