Чтение онлайн

на главную - закладки

Жанры

Характер Физических Законов
Шрифт:

Значит, в зависимости от того, включим мы свет или нет, мы получим разные результаты. Зажжем свет, и распределение будет описываться кривой N 1+ N 2. Выключим свет, и распределение сразу примет вид N 12. Включим его снова, и снова получим N 1+ N 2. Вы видите, природа опять вывернулась! Приходится говорить, что свет влияет на результат. Если свет включен, то вы получите другой результат, чем если бы он был выключен. Вы можете еще сказать, что свет влияет на поведение электронов.

Если мы станем говорить об экспериментальном исследовании движения электронов, что не совсем точно сказано, то можно утверждать, что свет влияет на это движение, в результате чего электроны, которые сами по себе попали бы в верхнюю часть последнего экрана, отклоняются, так сказать, сбиваются со своей траектории и попадают в нижнюю часть, сглаживая распределение таким образом, что в результате получается просто-напросто сумма N 1+ N 2.

Электроны очень чувствительны. Когда вы смотрите на бейсбольный мяч и видите, как он сверкает на солнце, это ничего не значит, его траектория от этого не меняется. Но если свет падает на электрон, он сталкивает его с пути, и вместо того, чтобы делать одно, электрон делает совсем другое. Ведь вы включили свет, да к тому же такой сильный.

Предположим тогда, что мы попытаемся ослабить этот свет все больше и больше, пока он не станет совсем тусклым, и воспользуемся очень чувствительными детекторами, позволяющими наблюдать очень тусклые вспышки при очень слабом освещении. Свет становится все слабее и слабее, а очень и очень слабый свет не должен бы изменять поведение электронов настолько сильно, что это радикальным образом отразится на картине распределения, изменив ее с N 12на N 1+ N 2. По мере того как свет становится все более тусклым, картина все больше и больше должна напоминать то; что мы получили в отсутствие света. Так как же происходит преобразование одного распределения в другое?

Прежде всего, свет - это не морская волна. Свет также ведет себя как поток частиц, называемых фотонами, и по мере уменьшения интенсивности света вы не ослабляете эффекта, а уменьшаете число фотонов, испускаемых источником. Ослабляя свет, я получаю все меньше и меньше фотонов. Самое меньшее, что может рассеиваться на электроне, - это один фотон, и если число имеющихся в нашем распоряжении фотонов слишком мало, некоторые электроны проскакивают через отверстие в тот момент, когда поблизости нет ни одного фотона, а в этом случае я его и не увижу. Поэтому слабый свет не значит, что мы используем маленькое возмущение, а значит только, что у нас мало фотонов. В результате, если свет достаточно слаб, мне придется ввести третий столбец - для электронов, которые я "не увидел". Если свет очень яркий, в третий столбец попадает лишь несколько электронов, если он очень слаб - почти все. Итак, у нас оказалось три столбца: для отверстия 1, для отверстия 2и для незамеченных электронов. Нетрудно догадаться, что получится у нас теперь. Замеченные электроны распределены как N 1+ N 2, а те, которые я не увидел, - как N 12. По мере того как я делаю свет все слабее и слабее, все большую и большую часть электронов заметить мне так и не удается. А реально полученное распределение представляет собой смесь этих двух кривых, так что, по мере ослабления света, оно все более напоминает N 12и переход этот совершается непрерывно.

Здесь я не имею возможности говорить о всех бесконечно разнообразных методах, которые можно было бы придумать для выяснения того, через какое отверстие пролетел зарегистрированный электрон. Но каждый раз оказывается, что невозможно поставить свет таким образом, чтобы можно было, с одной стороны, сказать, через какое отверстие пролетает наш электрон, а с другой - не исказить картины распределения регистрируемых электронов, не нарушить характера интерференции. И так происходит не только со светом, а с чем угодно, чем бы мы ни пользовались. Просто это принципиально невозможно. Конечно, можно, если хотите, изобрести целый ряд методов обнаружения, и каждый из них будет показывать, что электрон пролетает либо через одно отверстие, либо через другое. Но если вы попытаетесь построить ваш прибор таким образом, чтобы при этом он еще и не влиял на движение электрона, вы добьетесь лишь того, что вновь не сможете сказать, через какое же отверстие пролетел электрон, и результаты ваших наблюдений вновь окажутся запутанными.

Когда Гейзенберг открывал законы квантовой механики, он заметил, что эти новые законы природы оказываются непротиворечивыми только в том случае, если можно принять, что наши экспериментальные возможности принципиально ограничены некоторым образом, хотя мы и не замечали этого ранее. Другими словами, в эксперименте нельзя добиться по желанию сколь угодно большой чувствительности. В связи с этим Гейзенберг предложил свой принцип неопределенности, который по отношению к описанному выше эксперименту выглядит следующим образом (Гейзенберг сформулировал его по-другому, но обе формулировки эквивалентны и от одной можно перейти к другой):

"Нельзя сконструировать какой-либо прибор, при помощи которого можно было бы определить, через какое из отверстий пролетит электрон, не изменив при этом его движения настолько, что это разрушит интерференционную картину".

И еще никому не удалось обойти этот принцип. Уверен, что у вас просто чешутся руки, так вам хочется изобрести новый метод, позволяющий обнаружить, через какое отверстие пролетел электрон. Но после тщательного исследования любого из методов окажется, что он не годится. Вам покажется, что вы знаете, как это сделать, не влияя на электрон, но вы увидите, что всегда есть какая-нибудь загвоздка и что всегда различие в наблюдаемых картинах можно объяснить влиянием приборов, предназначенных для определения того, через какое отверстие пролетел электрон.

Это одна из основных характеристик природы, и она говорит нам кое-что обо всем. Если завтра найдут новую частицу, каон,- по правде говоря, каон уже найден, но ведь новую частицу нужно как-то назвать, так что назовем ее каоном, - я воспользуюсь каонами для того, чтобы при их помощи определить, через какое отверстие пролетит электрон. Я знаю заранее - по крайней мере я надеюсь, что это так, - вполне достаточно о свойствах этой еще не известной мне частицы, чтобы быть уверенным в том, что она не может сказать мне, через какое отверстие пролетел электрон, и не изменить при этом картины с интерференционной на безынтерференционную. Поэтому принципом неопределенности можно пользоваться как общим принципом, позволяющим предсказывать наперед многие характеристики неизвестных объектов. Вероятные свойства таких объектов не могут быть какими угодно.

Вернемся к нашему утверждению А"электрон должен пролететь либо через отверстие 1, либо через отверстие 2". Правильно это или нет?

Физики научились обходить западни. Они взяли за правило думать следующим образом. Если у вас есть прибор, позволяющий определять, через какое отверстие пролетел электрон (а такой прибор можно сделать), то вы можете утверждать, что он пролетает либо через одно отверстие, либо через другое. Так оно и происходит: когда вы следите за электроном, он пролетает либо через одно отверстие, либо через другое. Но если у вас нет такого прибора, то вы и не можете сказать, что он пролетает либо через одно отверстие, либо через другое. (Вернее, всегда можно сказать, что это так, если вы на этом сразу остановитесь и не станете пытаться сделать из этого какие-либо выводы. Физики же предпочитают просто не говорить этого, вместо того чтобы говорить и не делать никаких выводов.) Исходить же из того, что электрон пролетает либо через одно отверстие, либо через другое, когда вы этого не видите, значило бы основывать свои предсказания на ошибочной предпосылке. Вот тот логический канат, на котором приходится балансировать, если мы хотим заниматься объяснением явлений природы.

Утверждение, о котором мы говорим, носит самый общий характер. Оно относится не только к опыту с двумя отверстиями, и его можно сформулировать в общем виде следующим образом. Вероятность любого события в идеальном эксперименте - т.е. эксперименте, где все определено настолько точно, насколько только это возможно, - равна квадрату некоторой другой величины а, которую мы назвали амплитудой вероятности. Если это событие может происходить в нескольких взаимно исключающих вариантах, то амплитуда вероятности аполучается как сумма значений адля каждого из возможных вариантов (альтернатив).

Популярные книги

Кодекс Охотника. Книга XXIII

Винокуров Юрий
23. Кодекс Охотника
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Кодекс Охотника. Книга XXIII

Кодекс Охотника. Книга XXIV

Винокуров Юрий
24. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XXIV

Муж на сдачу

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Муж на сдачу

Особняк Ведьмы. Том 1

Дорничев Дмитрий
1. Особняк
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Особняк Ведьмы. Том 1

Идеальный мир для Лекаря 4

Сапфир Олег
4. Лекарь
Фантастика:
фэнтези
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 4

Власть силы-1

Зыков Виталий Валерьевич
5. Дорога домой
Фантастика:
фэнтези
8.11
рейтинг книги
Власть силы-1

Сердце Дракона. Предпоследний том. Часть 1

Клеванский Кирилл Сергеевич
Сердце дракона
Фантастика:
фэнтези
5.00
рейтинг книги
Сердце Дракона. Предпоследний том. Часть 1

Смертник из рода Валевских. Книга 1

Маханенко Василий Михайлович
1. Смертник из рода Валевских
Фантастика:
фэнтези
рпг
аниме
5.40
рейтинг книги
Смертник из рода Валевских. Книга 1

Не грози Дубровскому! Том V

Панарин Антон
5. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том V

Сахар на дне

Малиновская Маша
2. Со стеклом
Любовные романы:
современные любовные романы
эро литература
7.64
рейтинг книги
Сахар на дне

Огненный князь

Машуков Тимур
1. Багряный восход
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Огненный князь

Не грози Дубровскому! Том IX

Панарин Антон
9. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том IX

Сфирот

Прокофьев Роман Юрьевич
8. Стеллар
Фантастика:
боевая фантастика
рпг
6.92
рейтинг книги
Сфирот

Если твой босс... монстр!

Райская Ольга
Любовные романы:
любовно-фантастические романы
5.50
рейтинг книги
Если твой босс... монстр!