Чтение онлайн

на главную - закладки

Жанры

Шрифт:

Уж, как минимум, величина этих зарядов у галогенов и кислорода должна была быть наибольшей со знаком минус. А у щелочных и щелочноземельных металлов тоже большой, только со знаком плюс.

В любом химическом соединении есть элементы, отдающие электроны – окислители, неметаллы, отрицательный заряд, и элементы, отнимающие электроны – восстановители, металлы, положительный заряд. Именно таким путем сравнить элементы, соотнести их друг с другом и пытаются, определяя их степень окисления.

Однако выяснять таким способом степень окисления, на наш взгляд, не совсем точно отражает реальность.

Правильнее было бы сравнивать электроотрицательность элементов в молекуле. Ведь электроотрицательность – это почти то же, что и степень окисления (характеризует качество, только отдельно взятого элемента).

Можно взять шкалу электроотрицательности и проставить ее величины в формуле для каждого элемента. И тогда сразу будет видно, какие элементы отдают электроны, а какие забирают. Тот элемент, чья электроотрицательность в соединении наибольшая – отрицательный полюс, отдает электроны. А тот, чья электроотрицательность наименьшая – положительный полюс, забирает электроны.

Если элементов, допустим, 3 или 4 в молекуле, ничего не меняется. Все также ставим величины электроотрицательности и сравниваем.

Хотя при этом следует не забыть нарисовать модель строения молекулы. Ведь в любом соединении, если оно не простое, т. е. не состоит из одного типа элементов, связаны друг с другом, в первую очередь, металлы и неметаллы. Металлы отбирают электроны у неметаллов, и связываются с ними. И у одного элемента неметалла одновременно могут отбирать электроны 2 или большее число элементов с более выраженными металлическими свойствами. Так возникает сложная, комплексная молекула. Но это не означает, что в такой молекуле элементы-металлы вступят в прочную связь и друг с другом. Возможно, они будут располагаться на противоположных сторонах друг от друга. Если же рядом – они будут притягиваться. Но прочную связь образуют только в том случае, если один элемент более металличен, чем другой. Обязательно нужно, чтобы один элемент отбирал электроны – снимал. Иначе не произойдет оголения элемента – освобождения от свободных фотонов на поверхности. Поле Притяжения не проявится вполне, и прочной связи не будет. Это сложная тема – образование химических связей, и мы не будем подробно рассказывать об этом в этой статье.

Полагаем, мы достаточно подробно осветили тему, посвященную разбору понятий «электроотрицательность», «степень окисления», «окисление» и «восстановление», и предоставили вашему вниманию немало любопытной информации.

09. Принцип построения химических формул не точен

Давайте обсудим очень щекотливый вопрос, касающийся принятого ныне в химии принципа построения химических формул. Можно считать, что большинство химических формул составлено не верно. Мы не оспариваем сам химический состав. Мы не возражаем против присутствия в веществах тех или иных типов химических элементов. Но нас не устраивают индексы, указывающие на число элементов в формуле. Точное количественное соотношение элементов в формулах совсем иное.

Во-первых, при построении химических формул и присвоении химическим элементам индексов отталкиваются от номера группы, в которой располагается данный элемент. А истинное число групп в периодической таблице вовсе

не 8. Как минимум, 2–3 дополнительные группы составляют d– и f-элементы, которые следует располагать не в виде горизонтальных вставок, а вертикально.

Во-вторых, ученые не верно построили саму модель атома. Восемь электронов на внешнем уровне… Да и наличие самих этих уровней… Неверная концепция.

В-третьих, для ученых-химиков построение химических связей – это допостроение внешнего энерго-уровня до числа 8. Это число связано с общим числом групп в периодической системе.

Наука всегда смеялась над эзотерикой, и над нумерологией, в частности. Но сама стала ее жертвой, причем, в самой примитивной форме.

Вспомним, как сейчас строятся химические формулы, и как элементам в соединении присваиваются те или иные индексы, соответствующие числу атомов в соединении.

Индекс в химической формуле – это число, стоящее внизу справа, возле каждого химического элемента. Индексы указывают численное соотношение атомов в молекуле – так считается.

К слову сказать, мы не согласны даже с тем, что молекулы, как независимые структурные единицы вообще существуют.

На наш взгляд, в веществе все связано со всем, точнее, почти со всем.

Со школьной скамьи нас учат, что вода – это Н2О. Кислород, фор, водород, хлор – это О2, F2, Н2 и Cl2. Углекислый газ – СО2, серная кислота – H2SO4. Поваренная соль – NaCl, хлорная кислота – HCl, едкие щелочи – NaOH и KOH.

Более одаренные ученики запоминают формулы и других щелочей, кислот, солей, оксидов и прочих соединений.

Вся эта информация вот уже много поколений прилежно всеми заучивается, и является, своего рода, святыней и общественным достоянием науки.

Но мы все же рискнем сказать вам, что эти формулы не совсем точно отражают истинное строение веществ. В целом, зачастую, они задают верное направление, но не более. А все потому, что вся эта схема построения формул основывается на неверном постулате о стремлении каждого химического элемента достроить свой внешний энергетический уровень до 8 электронов.

Попробуем уловить общую схему того, как в действительности построены вещества, которые нас окружают, и которые мы можем встретить на планете и в Космосе.

Во-первых, не существует молекул, как независимых скоплений атомов, не связанных химическими связями с другими атомами вещества.

Нет молекул воды, углекислого газа, щелочей, кислот, солей, оксидов и пр., и пр. в привычном смысле этого слова. Точнее, они есть, но их строение совсем иное, нежели это описано в учебниках по химии. Молекула воды – это атом кислорода, окруженный атомами водорода.

Молекула углекислого газа – это атом углерода, окруженный атомами кислорода.

Молекула серной кислоты – это атом кислорода, окруженный атомами водорода и серы. Атомов водорода много, серы – немного.

Молекула соляной кислоты – это атом хлора, покрытый атомами водорода.

Молекула фосфорной кислоты – это атом кислорода, окруженный элементами водорода и фосфора. Водорода гораздо больше.

Молекула едкого натра – это атом кислорода, окруженный атомами водорода и натрия. Натрия немного.

Поделиться:
Популярные книги

Последний попаданец

Зубов Константин
1. Последний попаданец
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Последний попаданец

Седьмая жена короля

Шёпот Светлана
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Седьмая жена короля

Сама себе хозяйка

Красовская Марианна
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Сама себе хозяйка

Измена. Наследник для дракона

Солт Елена
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Измена. Наследник для дракона

Город драконов

Звездная Елена
1. Город драконов
Фантастика:
фэнтези
6.80
рейтинг книги
Город драконов

Ты всё ещё моя

Тодорова Елена
4. Под запретом
Любовные романы:
современные любовные романы
7.00
рейтинг книги
Ты всё ещё моя

Я тебя не отпущу

Коваленко Марья Сергеевна
4. Оголенные чувства
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Я тебя не отпущу

Волхв пятого разряда

Дроздов Анатолий Федорович
2. Ледащий
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Волхв пятого разряда

Рота Его Величества

Дроздов Анатолий Федорович
Новые герои
Фантастика:
боевая фантастика
8.55
рейтинг книги
Рота Его Величества

Новый Рал 2

Северный Лис
2. Рал!
Фантастика:
фэнтези
7.62
рейтинг книги
Новый Рал 2

Идеальный мир для Лекаря 19

Сапфир Олег
19. Лекарь
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 19

Темный Лекарь 6

Токсик Саша
6. Темный Лекарь
Фантастика:
аниме
фэнтези
5.00
рейтинг книги
Темный Лекарь 6

Шаман. Похищенные

Калбазов Константин Георгиевич
1. Шаман
Фантастика:
боевая фантастика
попаданцы
6.44
рейтинг книги
Шаман. Похищенные

Мастер Разума

Кронос Александр
1. Мастер Разума
Фантастика:
героическая фантастика
попаданцы
аниме
6.20
рейтинг книги
Мастер Разума