И тут появился изобретатель
Шрифт:
— Давайте поставим две трубы, — сказал начальник цеха. — Пока одна работает, другую успеем отремонтировать.
И тут появился изобретатель.
— Разве это дело: все время заниматься ремонтом?! — воскликнул он. — Есть у меня подходящая идея… Гарантирую: машина будет работать вечно!
Потребовалось всего пять минут, чтобы осуществить идею изобретения. Что предложил изобретатель?
Итак,
На этом хитрость заканчивается. Теперь нужна физика: как получить защитный слой шариков? Физика простая, ее проходят в седьмом классе: надо использовать магниты. Там, где труба изгибается, поставим снаружи магнит. Внутри к трубе сразу прилипнет слой шариков. Задача решена! Интересно отметить, что дробеметные аппараты для упрочнения деталей широко применялись по крайней мере за четверть века до появления авторского свидетельства № 261 207 на магнитную защиту. Все видели задачу, но решали ее иначе — устанавливали прокладки, делали стенки аппарата из более прочной стали…
Задача 26. Сверхточный кран
Заведующий химической лабораторией пригласил изобретателя и сказал:
— Нам надо управлять потоком газа, который по этой металлической трубе идет из одного сосуда в другой. У нас есть краны с притертой стеклянной пробкой, но они не обеспечивают требуемой точности: трудно регулировать величину отверстия, по которому перетекает газ.
— Конечно, — сказал изобретатель, — вы бы еще самоварный кран поставили.
Химик сделал вид, что не расслышал замечания.
— Можно, — продолжал он, — поставить резиновую трубку и зажим. Но и это не дает нужной точности.
— Зажимы, — усмехнулся изобретатель. — Бельевые прищепки…
Тут химик не выдержал:
— Сотни лет так работаем. Попробуйте-ка придумать кран не сложнее «прищепки» или «самоварного крана», а по точности раз в десять лучше.
— Капелька хитрости плюс физика девятого класса. Надо сделать так…
Что предложил изобретатель?
Для нас с вами кран — типичная вепольная система: корпус В1, поворачиваемая деталь В2 и поле механических сил Пмех. Под действием поля Пмехдеталь В2 перемещается относительно корпуса В1, благодаря чему зазор между В1 и В2
Здесь хитрости кончаются и начинается физика. В учебнике физики для девятого класса есть целая глава о тепловом расширении. А нам как раз и надо менять ширину зазора между В1 и В2.
Откроем учебник. Вот и описание опыта: сквозь нагретое кольцо проходит шар, который до этого не проходил. Рисунок кольца и шара — готовая модель нашего крана.
Сравним полученное решение с авторским свидетельством № 179 489: «Устройство для дозировки малых количеств газа, состоящее из корпуса, и стержня, плотно пригнанного к внутренней поверхности корпуса, отличающееся тем, что, с целью дозировки малых количеств газа с высокой степенью точности, корпус изготовлен из материала, имеющего большой коэффициент теплового расширения, а стержень — из материала, коэффициент теплового расширения которого значительно меньше, чем у материала корпуса».
Наверное, вы уже поняли, как работает такой кран. При нагревании корпус расширяется сильно, а стержень — слабо. Возникает зазор. Чем сильнее нагрет корпус, тем больше зазор. Смысл изобретения, как видите, в том, что вместо движения больших деталей, «железок», предложено использовать растяжение и сжатие кристаллической решетки.
Кстати, растягивать и сжимать кристаллическую решетку можно не только тепловым полем. «Некоторые кристаллы, например кварц, сегнетова соль и турмалин, в электрическом поле меняют свои размеры: в зависимости от направления поля они сжимаются или растягиваются», — это из учебника физики для десятого класса. Называется это явление обратным пьезоэффектом. Ну а то, что обратный пьезоэффект можно использовать для создания микрокрана, вы и сами уже догадались.
Есть еще один похожий эффект — магнитострикция: магнитное поле растягивает (или сжимает) некоторые металлы. Тоже подходящий ответ для задачи о кране.
Как решать задачи, которых еще нет
Прием решения многих задач: «Переход с макроуровня на микроуровень».
Вот, например, авторское свидетельство № 438 327: «Вибрационный гироскоп с массами, приводимыми в колебательное движение внешними переменными или электрическими полями, отличающийся тем, что в качестве колеблющихся масс применены электроны или заряженные ионы». В обычных вибрационных гироскопах колеблются массивные грузы — «гири», установленные на стержнях. Идея изобретения в том, что в качестве «гирь» взяты микрочастицы — электроны или ионы. Такой гироскоп намного компактнее, точнее и надежнее.
Когда в предыдущей главе вы читали о четырех этапах развития технических систем, у вас, возможно, возник вопрос: ну, хорошо, системы проходят четыре этапа, а что происходит с системами дальше? А дальше две возможности. Об одной я уже говорил: система, достигнув пределов развития, объединяется с другой системой и образует новую, более сложную систему — развитие продолжается. Например, велосипед, объединившись с двигателем внутреннего сгорания, превратился в мотоцикл. Возникла новая система, развитие продолжалось.