И тут появился изобретатель
Шрифт:
В одном северном районе работала электростанция, находящаяся в ста километрах от города. Зимой время от времени приходилось обогревать линию: подавали очень сильный ток, провода нагревались, лед подтаивал, падал. Пока обогревали линию, всех потребителей электростанции приходилось отключать. Стояла суровая зима, и начальник станции, опасаясь обледенения, приказал почаще отключать подачу энергии и обогревать линию. Останавливались заводы, гас свет в домах.
Посыпались жалобы, и начальник решил производить обогрев пореже. Провода стали рваться, город часто оставался без электроэнергии.
—
И тут появился изобретатель.
— Раскрываем учебник физики для седьмого класса, — сказал он. — Достроим веполь и используем явление электромагнитной индукции…
Почему изобретатель упомянул о достройке веполя? Как использовать электромагнитную индукцию?
Даны провод (вещество) и электрический ток (поле). Льда на проводе не должно быть. Значит, у нас только одно вещество и поле. Чтобы достроить веполь, нужно ввести второе вещество. Это вещество под действием обычного электрического тока будет нагреваться и обогревать провод. В чем тут хитрость? Провод сделан из вещества с низким электрическим сопротивлением и не нагревается под действием идущего по нему тока. Сделать провод из металла с высоким сопротивлением нельзя — провод будет горячим, но потребители не получат энергию. Физическое противоречие: сопротивление провода должно быть большим и должно быть небольшим… Изобретатель предложил взять два вещества: провод остается обычным проводом, но через каждые пять метров на него надевают колечко из феррита — ферромагнитного вещества с высоким электрическим сопротивлением. Благодаря электромагнитной индукции в колечках возникает ток, колечки быстро нагреваются и предотвращают обледенение провода.
На это решение несколько лет назад выдано авторское свидетельство. Но задачу без особого труда решают десятиклассники, знающие основы вепольного анализа.
Казалось бы, с задачей все в порядке — получен хороший ответ. Однако ферритовые колечки нагревают линию круглый год. Представляете себе, сколько энергии расходуется напрасно? Даже зимой нет надобности нагревать всю линию, а только те участки, где температура ниже нуля. Возникает новая задача: как сделать, чтобы колечки сами включались при низкой температуре и выключались, если температура повышается?
Для решения этой задачи нужно знать, что ферритовые вещества остаются ферромагнитными только до определенной температуры, называемой точкой Кюри. У разных ферромагнитных веществ разная точка Кюри. Можно сделать колечки из вещества с точкой Кюри, скажем, около пяти градусов. Тогда колечки будут сами выключаться, если температура воздуха превысит пять градусов, и сами же будут включаться при температуре ниже пяти градусов.
Появление и исчезновение магнитных свойств при переходе через точку Кюри можно использовать и при решении других задач.
Запомните это интереснейшее физическое явление.
Вся необъятная физика
Анри Грижо, пациент психиатрической клиники, изобретал… твердую воду. Не лед, а именно твердую воду, которая не плавилась бы по крайней мере до 200 градусов. И это удалось… в фантастическом рассказе одного польского писателя «Сумасшедший». Грижо получил белый, похожий на пудру порошок. При сильном нагревании порошок превращался в обыкновенную чистую воду.
Рассказ был опубликован в 1964 году. А три года спустя и в самом деле изобрели твердую воду, состоящую из такой смеси: 90 процентов воды и 10 процентов кремниевой кислоты. Твердая вода, действительно, оказалась похожей на белую пудру.
Может возникнуть вопрос: а зачем нужна твердая вода?
Предоставим слово Анри Грижо:
«Мое изобретение позволит сооружать заводы в местностях, богатых минеральным сырьем, но бедных водой; сейчас ее доставляют в дорогостоящих цистернах, а будут посылать просто в бумажных мешках. Торговля? Совершенно исчезнут стеклянные, керамические и металлические сосуды для всяких жидкостей. Жидкости будут продаваться в виде порошков, содержащих сухую воду… Тысячи, десятки тысяч способов использования сухой воды в обыкновенной жизни приведут к полному перевороту. Пользоваться водой в жидком состоянии будет так же смешно, как и пользоваться лучиной».
Ученые стремятся получить твердую воду, которая содержала бы всего 2-3 процента кремниевой кислоты. В учебниках физики об этом еще ничего нет. Физика развивается очень быстро, все время открываются новые эффекты и явления. Представляете себе, как важно изобретателям знать об этих новых открытиях?
Вот типичная история. Пока одни ученые старались сделать воду более твердой, другие искали пути сделать воду более… жидкой. В 1948 году английский ученый В. Томс открыл удивительный физический эффект: трение воды о стенки водопровода можно резко уменьшить, если добавить в воду ничтожное количество (сотые доли процента) некоторых полимеров. Трение в значительной мере вызвано образованием вихрей в быстро движущемся потоке, а длинные молекулы полимеров, располагаясь вдоль потока, гасят вихри, упорядочивают движение воды, делают воду более скользкой…
Сообщение об эффекте Томса было опубликовано, и вскоре появилось множество изобретений, использовавших новое открытие. Эффект Томса помогал увеличивать скорость кораблей, снижать потери энергии при транспортировке по трубам самых различных жидкостей, увеличивать «дальнобойность» пожарных брандспойтов.
А недавно изобретатели из Московского государственного университета предложили добавлять полимеры в… лед на катках. Под лезвием конька создается высокое давление, лед плавится, образуется тонкий слой водяной смазки, позволяющей конькобежцу скользить по льду. Полимер, добавленный в лед, переходит в эту смазку и уменьшает трение.
Таких примеров можно привести очень много. Изобретателю нужна вся необъятная физика — тысячи и тысячи эффектов и явлений. Вы можете возразить: ни один физик не знает всю физику, ведь в ней так много разделов. Нельзя требовать от изобретателя, чтобы он знал физику лучше физиков. Да, конечно, нельзя объять необъятное. Выход — в создании подробных справочников по изобретательскому применению физических эффектов и явлений. Примерно так, как мы это сделали с коронным разрядом, только, конечно, значительно подробнее и точнее.