Чтение онлайн

на главную

Жанры

Идеальная ставка
Шрифт:

Однако мы можем попробовать другой подход: не изучать взаимодействие молекул между собой во всех подробностях, а понять общие закономерности. Рассматривая совокупность частиц жидкости, мы сможем проследить, как они будут распространяться и смешиваться, пока спустя определенный период времени краска не окажется рассеянной по всему бассейну. Даже ничего не зная о причине происходящего, мы можем оценить его следствие.

То же самое можно сказать и о принципе действия рулетки. Траектория шарика зависит от множества факторов, которые мы не можем отследить, наблюдая за вращающимся колесом. Так же как с молекулами воды, мы не можем делать прогнозы о конкретном вращении рулетки, если не понимаем общие закономерности, влияющие на траекторию движения шарика. Но,

как предполагал Пуанкаре, нам не обязательно знать, что именно заставило конкретный шарик остановиться здесь, а не там. Мы можем просто пронаблюдать множество вращений и сделать выводы.

Именно такими наблюдениями занимались Альберт Хибс и Рой Уолфорд в 1947 году. Оба учились в Чикагском университете, Хибс – на математическом факультете, его друг Уолфорд – на медицинском. Как-то на каникулах приятели отправились в Рино – удостовериться, так ли непредсказуема игра в рулетку, как полагают устроители казино.

Большинство современных рулеток выполнены в оригинальном французском дизайне: 38 ячеек с числами от 1 до 36, поочередно раскрашенных в черный и красный цвет, и ячейки с цифрами 0 и 00 – зеленого цвета. Когда выпадает «зеро», выигрывает казино. Если мы сделаем серию ставок по одному доллару на свой любимый номер, то в среднем можем ожидать один выигрыш на каждые 38 попыток, и в этом случае казино заплатит нам 36 долларов. Таким образом, если мы будем крутить рулетку 38 раз, мы потратим 38 долларов, но выиграть в среднем сможем лишь 36 долларов. Это значит, что наши потери составят два доллара, или по пять центов на каждый спин – запуск рулетки.

Казино получает доход благодаря равномерному распределению выпадения всех чисел рулетки при каждом вращении. Однако рулетка, как и всякий механизм, не застрахована от дефектов или износа при длительной работе. Хибс и Уолфорд искали именно такие столы, где числа распределялись неравномерно. Обнаружив число, выпадающее чаще остальных, они могли извлечь из этой ситуации выгоду. Друзья снова и снова смотрели, как крутится рулетка, надеясь уловить нечто необычное. Но тут возникает вопрос: что значит «необычное»?

Пока во Франции Пуанкаре размышлял об истоках случайности, на другом берегу Ла-Манша Карл Пирсон проводил летние каникулы за подбрасыванием монетки. К концу каникул математик подбросил шиллинг 25 тысяч раз, прилежно записывая результат каждого броска. Большинство своих опытов он проделал на свежем воздухе. «Не сомневаюсь, что этим я заработал скверную репутацию у соседей», – вспоминал ученый. Помимо экспериментов с шиллингом Пирсон подрядил своего коллегу подбрасывать монету в один пенс (более 8000 раз) и вытягивать из сумки лотерейные билеты.

Пирсон считал, что для понимания случайности важно собрать как можно больше данных. По его словам, проблема заключалась в том, что ученые не располагают «абсолютным знанием о природных явлениях» – им доступно только «знание об ощущениях». Пирсон не ограничился монетами и лотерейными билетами. В поиске новых данных он обратил взгляд на Монте-Карло.

Как и Пуанкаре, Пирсон был человеком энциклопедического склада. Он интересовался не только теорией случайности. Пирсон писал пьесы и стихи, изучал физику и философию. Англичанин по рождению, он много путешествовал. Особенно его интересовала немецкая культура, и когда в университете Гейдельберга его имя – Карл – по ошибке написали с заглавной латинской «К» вместо «С», он решил писать его так и впредь.

К сожалению, надежд съездить в Монте-Карло у ученого было мало. Пирсон понимал, что вряд ли сможет добыть финансирование для «научной командировки» в казино Французской Ривьеры. Но лично смотреть на крутящийся шарик оказалось вовсе не обязательно. Газета Le Monaco каждую неделю публиковала записи результатов игры в рулетку. Пирсон решил сосредоточиться на результатах четырехнедельного периода лета 1892 года. Для начала он посмотрел пропорции выпадения красного и черного. При условии вращения рулетки бесконечное число раз и игнорирования зеро Пирсон ожидал

увидеть соотношение красного и черного, близкое к равновесному.

Согласно результатам, опубликованным в газете, при примерно 16 тысячах спинов красное выпадало в 50,15 % случаев. Чтобы узнать, была ли эта разница случайной, Пирсон подсчитал количество спинов с отклонениями от 50 % и сравнил полученную цифру со средней, выведенной на основе вероятности. Оказалось, что разница в 0,15 % достаточно мала, чтобы усомниться в случайном характере вращения рулетки.

Итак, красное и черное выпадали примерно одинаковое число раз. Но Пирсон хотел проверить и другие параметры, например, выяснить, как часто выпадает один и тот же цвет подряд. Такая «полоса удачи» способна привести игроков в настоящее исступление. Например, в ночь на 18 августа 1913 года в одном из казино Монте-Карло шарик останавливался на черном больше дюжины раз подряд. Игроки толпились вокруг стола в ожидании очередного спина. Ну, не может же быть, чтобы снова выпало черное? Пока крутился шарик, игроки лихорадочно делали ставки на красное, но шарик упорно останавливался на черном. И опять. И опять. Однажды шарик «посетил» черное 26 раз подряд! Если вращение колеса есть дело случая, то каждый последующий спин не связан с предыдущим. Частота выпадений черного не делает более вероятным выпадение красного. Но в тот вечер все игроки верили, что вот-вот выпадет красное. С тех пор эта психологическая ловушка известна как «ошибка игрока» или «ложный вывод Монте-Карло».

Когда Пирсон сравнил количество выпадений одного цвета подряд с предполагаемым количеством таких выпадений в случае полной непредсказуемости поведения рулетки, результаты его насторожили. Один и тот же цвет выпадал два и три раза подряд гораздо реже, чем должен был бы. А чередования разных цветов – например, «красное-черное-красное» – встречались подозрительно часто. Пирсон просчитал вероятность получения столь странного результата, взяв за основу предположение, что колесо рулетки вращается случайным образом. Вероятность, которую он обозначил как p, оказалась чрезвычайно мала. Настолько мала, что, по словам Пирсона, он не дождался бы нужного результата, даже наблюдай он за рулеткой в Монте-Карло с момента Сотворения мира. Ученый счел, что полученные им данные неопровержимо доказывают: рулеткой управляет не слепой случай.

Пирсон был в ярости. Он надеялся, что рулетка станет отличным источником случайных данных, а его огромная лаборатория-казино выдавала недостоверные результаты. «Ученый может успешно предсказать, какой стороной упадет полупенсовик, – сетовал он, – но рулетка в Монте-Карло камня на камне не оставит от его теорий и посмеется над его расчетами». Коль скоро рулетка оказалась бесполезна для его исследований, Пирсон предложил закрыть все казино, а их доходы пожертвовать на благо науки. Позже, правда, обнаружилось, что в полученных ученым данных были повинны вовсе не «неправильные» рулетки. Просто журналисты из Le Monaco, которым по долгу службы полагалось наблюдать за игровыми столами и вести записи, часто предпочитали не утруждаться и брали цифры с потолка.

В отличие от ленивых репортеров Хибс и Уолфорд наблюдали за четырьмя рулетками в казино Рино очень внимательно. И обнаружили, что одна из них имеет смещение. Сделав ставки на этой «кривой» рулетке, друзья смогли изрядно увеличить свою первоначальную стодолларовую ставку. Сведения об их конечном выигрыше разнятся, но, каким бы он ни был, его хватило на покупку яхты и годовой круиз по Карибскому морю.

Существует множество легенд об игроках, обогатившихся схожим образом. Большой популярностью пользовались истории об инженере Викторианской эпохи Джозефе Джаггере, который при помощи дефектной рулетки выиграл в казино Монте-Карло целое состояние, а также об аргентинском синдикате, члены которого в начале 1950-х обчищали принадлежащие государству казино. Благодаря опытам Пирсона распознать уязвимую рулетку стало нетрудно. Но найти рулетку со смещением еще не значит найти прибыльную рулетку.

Поделиться:
Популярные книги

Сумеречный Стрелок 2

Карелин Сергей Витальевич
2. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 2

Идеальный мир для Лекаря 25

Сапфир Олег
25. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 25

Ненаглядная жена его светлости

Зика Натаэль
Любовные романы:
любовно-фантастические романы
6.23
рейтинг книги
Ненаглядная жена его светлости

Гримуар тёмного лорда I

Грехов Тимофей
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Гримуар тёмного лорда I

Печать мастера

Лисина Александра
6. Гибрид
Фантастика:
попаданцы
технофэнтези
аниме
фэнтези
6.00
рейтинг книги
Печать мастера

Мастер 7

Чащин Валерий
7. Мастер
Фантастика:
фэнтези
боевая фантастика
попаданцы
технофэнтези
аниме
5.00
рейтинг книги
Мастер 7

Шведский стол

Ланцов Михаил Алексеевич
3. Сын Петра
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Шведский стол

Последняя Арена 4

Греков Сергей
4. Последняя Арена
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Последняя Арена 4

Истинная поневоле, или Сирота в Академии Драконов

Найт Алекс
3. Академия Драконов, или Девушки с секретом
Любовные романы:
любовно-фантастические романы
6.37
рейтинг книги
Истинная поневоле, или Сирота в Академии Драконов

Безумный Макс. Ротмистр Империи

Ланцов Михаил Алексеевич
2. Безумный Макс
Фантастика:
героическая фантастика
альтернативная история
4.67
рейтинг книги
Безумный Макс. Ротмистр Империи

Отмороженный 11.0

Гарцевич Евгений Александрович
11. Отмороженный
Фантастика:
боевая фантастика
рпг
попаданцы
фантастика: прочее
фэнтези
5.00
рейтинг книги
Отмороженный 11.0

Комбинация

Ланцов Михаил Алексеевич
2. Сын Петра
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Комбинация

Эра Мангуста. Том 2

Третьяков Андрей
2. Рос: Мангуст
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Эра Мангуста. Том 2

Покоривший СТЕНУ. Десятый этаж

Мантикор Артемис
3. Покоривший СТЕНУ
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Покоривший СТЕНУ. Десятый этаж