Чтение онлайн

на главную

Жанры

Идеальная ставка
Шрифт:

В 1948 году статистик Алан Уилсон на протяжении четырех с лишним недель записывал круглосуточные результаты игры в рулетку. Применив методику Пирсона, он быстро понял, что рулетка имеет смещение. Однако это не давало подсказок, как следует делать ставки. В публикации своего исследования Уилсон бросил читателям-игрокам вызов. «На основе каких статистических показателей вы поставите на конкретное число в рулетке?» – задал он им вопрос.

На поиск ответа ушло 35 лет. В конце концов математик Стюарт Этье догадался, что фокус состоит не в том, чтобы искать рулетку с дефектом, а в том, чтобы найти рулетку, выгодную для ставок. Даже если, отследив огромное количество спинов, мы установим, что одно из 38 чисел выпадает чаще остальных, этого будет еще

не достаточно для получения выгоды. Число должно появляться не меньше чем один раз за 36 спинов, в противном случае мы все равно проиграем казино.

На рулетке Уилсона наиболее часто выпадающим числом было 19, но Этье не нашел доказательств того, что ставка на него была бы выгодна в долгосрочной перспективе. Несомненно, в поведении рулетки присутствовала некая закономерность, однако «счастливых» чисел на ней не было. Этье понимал, что большинству игроков пользоваться его методом уже поздно: с тех пор как Хибс и Уолфорд сорвали в Рино большой куш, рулетки со смещением практически исчезли из казино. Но рулетке недолго оставалось быть непобедимой.

Находясь на самом глубоком уровне незнания и не понимая причин отдельных явлений, единственное, что мы можем сделать, – осуществить наблюдение за множеством явлений и понять, существует ли между ними закономерность, она же паттерн. Как мы видим, этот статистический подход хорошо работает с дефектной рулеткой. Не имея знаний о ее физических особенностях, мы тем не менее можем прогнозировать ее поведение.

Но что, если отсутствует смещение в рулетке или недостает времени для сбора данных? Троица, игравшая в Ritz, не следила за спинами в надежде найти дефект рулетки. Игроки наблюдали за траекторией шарика в процессе вращения рулетки. Иными словами, они проскочили не только третий, но и второй уровень невежества по Пуанкаре.

А это вам не шутки. Ведь даже если мы досконально разберем все физические процессы, воздействующие на движущийся шарик, то все равно не сможем точно спрогнозировать, где он остановится. В отличие от случая с банкой краски в бассейне причины явления не слишком сложны, а, наоборот, слишком ничтожны, чтобы их заметить. Малейшие различия в начальной скорости шарика способны существенно повлиять на характер его движения. Пуанкаре утверждал, что изменение в исходном состоянии шарика в рулетке – настолько незначительное, что ускользает от нашего внимания, – приводит к эффекту, не заметить который уже невозможно. И именно этот эффект мы приписываем игре случая.

Проблема, известная как «чувствительная зависимость от начальных условий», заключается в том, что, даже если мы соберем детальную информацию о некоем явлении – будь то вращение рулетки или движение тропического шторма, – малейшее упущение обернется слишком серьезными последствиями. За 70 лет до того, как математик Эдвард Лоренц задал на лекции свой знаменитый вопрос: «Может ли взмах крыльев бабочки в Бразилии запустить торнадо в Техасе?» – Пуанкаре уже в общих чертах обрисовал «эффект бабочки».

Исследования Лоренца, из которых впоследствии выросла теория хаоса, фокусировались главным образом на прогнозировании. Лоренцем двигало стремление научиться более точно предсказывать погоду и заглядывать в будущее. Пуанкаре интересовало нечто противоположное: как много времени требуется для того, чтобы процесс стал непредсказуемым? И можно ли считать таковым движение шарика в рулетке?

Рулетка вдохновила Пуанкаре, однако свой прорыв в науке он осуществил, изучая движение значительно более крупных объектов. В XIX веке астрономы создали карту астероидов, проходящих через созвездия зодиака. Они определили, что астероиды распределяются по звездному небу достаточно равномерно. Пуанкаре хотел понять почему.

Ему было известно, что астероиды подчиняются законам движения Кеплера и что узнать их начальную скорость невозможно. Как заметил Пуанкаре, «звездное небо можно представить в виде гигантской рулетки, на которую Создатель бросил множество шариков». Чтобы понять принцип движения астероидов, Пуанкаре решил сравнить общее расстояние, которое проходит гипотетический объект, с числом его вращений вокруг центра своей орбиты.

Представьте, что вы разворачиваете очень длинный рулон очень гладкой бумаги. Разложив бумагу на полу, вы запускаете по ней шарик. Вслед ему – еще один, еще и еще. Одни шарики вы запускаете быстро, другие медленно. Поскольку бумага ровная, шарик, запущенный быстрее, укатится дальше. Через некоторое время после начала движения шариков вы фиксируете их положение на бумаге, делая надрезы на краю листа бумаги напротив каждого шарика. Затем вы убираете шарики и скручиваете рулон. Теперь, если вы посмотрите на край рулона, каждый надрез сможет оказаться в любой точке окружности. Это происходит потому, что длина листа и, следовательно, расстояние, которое проходят шарики, намного больше диаметра рулона. Даже небольшая разница в дистанциях, пройденных шариками, значительно отразится на расположении надрезов на окружности. Если вы скрутите рулон достаточно туго, чувствительная зависимость от начальных условий приведет к равномерному размещению мест надрезов. Пуанкаре доказал, что то же самое происходит с орбитами астероидов. С течением времени они равномерно распределяются по поясу зодиака.

Для Пуанкаре и рулетка, и пояс зодиака подтверждали один и тот же принцип. Ученый предположил, что после большого количества вращений место остановки шарика в рулетке тоже может быть абсолютно случайным. Он отметил, что определенные варианты ставок попадают в пределы случайности чаще, чем другие. Поскольку ячейки рулетки покрашены попеременно в черный и красный цвета, прогнозирование выпадения того или иного цвета предполагает точный расчет того места, где остановится шарик. Это чрезвычайно трудно даже после одного или двух спинов. Другие виды ставок, например на то, в какой части рулетки остановится шарик, меньше зависят от начальных условий. Здесь потребуется множество спинов, прежде чем результат станет практически случайным.

К счастью для игроков, шарик в рулетке крутится недолго (хотя существует расхожий миф, будто математик Блез Паскаль изобрел рулетку, пытаясь построить вечный двигатель). И в результате игроки могут (в теории) избежать второй степени незнания Пуанкаре путем измерения начального пути шарика. Нужно лишь понять, какие параметры взять для вычислений.

Инцидент в Ritz был не первым случаем, когда для наблюдений за рулеткой применялись научные технологии. Восемь лет спустя после того, как Хибс и Уолфорд воспользовались дефектом рулетки в Рино, Эдвард Торп сидел в комнате отдыха Калифорнийского университета в Лос-Анджелесе и болтал с приятелями о том, где бы по-быстрому срубить денег. Тем солнечным воскресным днем студенты обсуждали, как обдурить рулетку. Когда один из них сказал, что механизм рулетки в казино практически безупречен, в голове у Торпа что-то щелкнуло. Он как раз начал работать над диссертацией по физике, и ему пришло в голову, что победа над надежной, хорошо сбалансированной рулеткой – на самом деле не вопрос статистики. Это вопрос физики. «Крутящийся шарик рулетки вдруг показался мне планетой, величественно движущейся по точной и предсказуемой траектории», – вспоминал Торп.

В 1955 году Торп раздобыл стол с рулеткой в половину натуральной величины и приступил к работе, анализируя спины с камерой и секундомером. Однако вскоре он заметил, что взятое для эксперимента колесо имеет столько дефектов, что ни о каком прогнозировании его поведения и речи быть не может. Но это не остановило ученого, и он продолжил изучать рулетку всеми доступными способами. Однажды Торп даже не дошел до входной двери, чтобы открыть ее приглашенным на ужин родственникам. Гости нашли его на кухне, в пылу научного эксперимента. Ученый катал по полу шарики, выясняя, какое расстояние способен преодолеть каждый из них.

Поделиться:
Популярные книги

Последний попаданец 2

Зубов Константин
2. Последний попаданец
Фантастика:
юмористическая фантастика
попаданцы
рпг
7.50
рейтинг книги
Последний попаданец 2

"Фантастика 2023-123". Компиляция. Книги 1-25

Харников Александр Петрович
Фантастика 2023. Компиляция
Фантастика:
боевая фантастика
альтернативная история
5.00
рейтинг книги
Фантастика 2023-123. Компиляция. Книги 1-25

Мама из другого мира. Дела семейные и не только

Рыжая Ехидна
4. Королевский приют имени графа Тадеуса Оберона
Любовные романы:
любовно-фантастические романы
9.34
рейтинг книги
Мама из другого мира. Дела семейные и не только

Восход. Солнцев. Книга IX

Скабер Артемий
9. Голос Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Восход. Солнцев. Книга IX

Идущий в тени 3

Амврелий Марк
3. Идущий в тени
Фантастика:
боевая фантастика
6.36
рейтинг книги
Идущий в тени 3

С Новым Гадом

Юнина Наталья
Любовные романы:
современные любовные романы
эро литература
7.14
рейтинг книги
С Новым Гадом

Флеш Рояль

Тоцка Тала
Детективы:
триллеры
7.11
рейтинг книги
Флеш Рояль

Мастер Разума

Кронос Александр
1. Мастер Разума
Фантастика:
героическая фантастика
попаданцы
аниме
6.20
рейтинг книги
Мастер Разума

Неожиданный наследник

Яманов Александр
1. Царь Иоанн Кровавый
Приключения:
исторические приключения
5.00
рейтинг книги
Неожиданный наследник

Восход. Солнцев. Книга XI

Скабер Артемий
11. Голос Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Восход. Солнцев. Книга XI

Система Возвышения. (цикл 1-8) - Николай Раздоров

Раздоров Николай
Система Возвышения
Фантастика:
боевая фантастика
4.65
рейтинг книги
Система Возвышения. (цикл 1-8) - Николай Раздоров

Таблеточку, Ваше Темнейшество?

Алая Лира
Любовные романы:
любовно-фантастические романы
6.30
рейтинг книги
Таблеточку, Ваше Темнейшество?

Пенсия для морского дьявола

Чиркунов Игорь
1. Первый в касте бездны
Фантастика:
попаданцы
5.29
рейтинг книги
Пенсия для морского дьявола

Герой

Бубела Олег Николаевич
4. Совсем не герой
Фантастика:
фэнтези
попаданцы
9.26
рейтинг книги
Герой