Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания
Шрифт:
Рассмотрение электрона и других материальных частиц как следствия геометрии похоже на объяснение веревочных узлов через изучение того, как их вязать. Представьте себе девочку, нашедшую хитро завязанный узел на клубке пряжи и считающую узел чем-то отдельным от нити. Она просит у мамы коробочку с узлами, чтобы поиграть. Мама, которая работает профессором в Гёттингене, терпеливо объясняет ей, что узлы — это не отдельные предметы, и показывает, как завязать узел, используя нить. Нить является фундаментальной, а узлы — нет. Схожим образом Гильберт и Ми предполагали, что на первом плане должна стоять геометрия полей, а их скручивания проявляют себя как частицы.
Одним из наиболее одаренных студентов Гильберта был Герман Вейль (известный друзьям как «Питер»), защитивший докторскую диссертацию в Гёттингене
Ободренный похвалой Эйнштейна, Вейль надеялся, что новая статья под названием «Гравитация и электричество», которую он уже написал, также будет воспринята с энтузиазмом. В статье предлагался способ тонкой подстройки общей теории относительности, позволяющий включить уравнения Максвеллав качестве следствий. Он послал Эйнштейну рукопись, надеясь, что тот порекомендует ее к публикации.
Хотя поначалу Эйнштейн обрадовался тому, что Вейль, казалось, нашел способ провести тайком электромагнетизм в театр гравитации, он изменил свое мнение, когда увидел, что это вторжение испортит все представление. Идея Вейля основывалась на модификации способа параллельного переноса (процесса, при котором вектор перемещается от точки к точке, сохраняя свое направление). В стандартной общей теории относительности аффинная связность, которая определяет правила преобразования компонент векторов, и метрический тензор, который определяет интервалы в пространстве-времени (четырехмерные расстояния), связаны друг с другом определенным математическим соотношением. В нашей аналогии с навесом в пустыне роль этого соотношения играет связь между каркасом и навесом. Вейль изменил эту связь, добавив дополнительный фактор, который назвал калибровкой. Так же, как железные дороги в разных странах (к примеру, в России и Польше) могут иметь различный размер колеи, Вейль предложил изменять единицу измерения четырехмерного расстояния от точки к точке. В качестве бонуса дополнительный калибровочный фактор приводил к эффекту, эквивалентному электромагнитному полю. Однако Эйнштейн считал изменение единицы измерения нефизическим, поэтому он и не мог дать добро на такую радикальную перестройку своей теории. Вейль был очень огорчен тем, что Эйнштейн отверг его идею.
Будучи так и не использованной в общей теории относительности, идея калибровки Вейля позже нашла очень успешное применение в другой области — физике элементарных частиц. В своей современной форме калибровка, вместо реального пространства, производится в некотором абстрактном пространстве. Интерес к бозону Хиггса, необходимому для объяснения значений масс некоторых частиц, во многом связан с вейлевской концепцией калибровки.
Приключения в пятом измерении
Другой выпускник Гёттингена, финский физик Гуннар Нордстрём, предложил свой вариант единой теории в 1914 году. Она примечательна тем, что в ней впервые рассматривалось пятое измерение, дополняющее три пространственных и одно временное. Нордстрём обнаружил, что введение пятого измерения дает больше возможностей для теоретического маневра, необходимого для объединения уравнений Максвелла с гравитацией. Эта теория, однако, не основывалась на общей теории относительности, и два года спустя Нордстрём отказался от своих идей в пользу подхода Эйнштейна. Хотя нет никаких свидетельств, что Эйнштейн прислушался к Нордстрёму, но на него сильно повлияла другая пятимерная теория.
В апреле 1919 года Эйнштейн получил письмо от Теодора Калуцы, малоизвестного приват-доцента из университета Кенигсберга. (В германской академической системе приват-доцент — это лектор, который зарабатывает, продавая билеты на свои лекции, не получая жалованья от университета.) Калуца двадцать лет занимал этот пост, и ему едва хватало средств, чтобы содержать семью. Возможно, помня скромное начало своей собственной карьеры, Эйнштейн уделил его письму особое внимание, несмотря на невысокий академический статус отправителя. Хотя в то время Калуца находился очень далеко от мейнстрима, однажды он прочувствовал на себе головокружительную атмосферу Геттингена. Будучи студентом, Калуца провел там один год (в 1908-м) и познакомился с геометрическими идеями Клейна, Гильберта и Минковского. Он также встретил там Вейля{46}. Так у Калуцы зародились идеи уникального подхода к объединению, которые дадут всходы одиннадцать лет спустя.
В письме Эйнштейну Калуца изложил мысль, которая пришла к нему как своего рода откровение. Однажды он работал в своем кабинете и вдруг понял, что при добавлении дополнительного измерения и дополнительных компонент к тензорам общей теории относительности получившаяся теория будет приводить не только к уравнениям гравитационного поля, но и к уравнениям Максвелла. Тензор Эйнштейна вместо матрицы 4x4 станет матрицей 5x5. Вместо 16 компонент, из которых 10 независимы по соображениям симметрии, тензор будет иметь 25 компонент, и 15 из них будут независимыми. Это означает, что добавятся пять независимых компонент, четыре из которых могут описывать электромагнетизм, а пятую можно просто игнорировать. Простое изменение числа измерений, казалось, давало достаточно простора для объединения. По воспоминаниям сына Калуцы, находившегося в тот момент с ним в комнате, он был так взволнован, что застыл на месте в течение нескольких секунд, а затем вскочил и начал напевать мелодию из «Женитьбы Фигаро»{47}.
Обе схемы, Нордстрёма и Калуцы, разработанные независимо друг от друга, базировались на идее увеличения размерности пространства-времени. Для математиков или матфизиков, привыкших к пьянящему воздуху Геттингена, введение дополнительного измерения было таким же простым делом, как сложение чисел. Одно измерение для линий, два измерения для квадрата и три для куба. Добавим еще одно измерение и получим гиперкуб. Так же как куб является трехмерным объектом, ограниченным шестью квадратами, гиперкуб является четырехмерным объектом, ограниченным восемью кубами. Прибавьте к этим четырем измерениям время, и вы получите пятимерное пространство-время, в котором временному измерению обычно присваивается четвертый номер, а дополнительному пространственному измерению — пятый.
Однако экспериментаторам из мейнстрима той эпохи концепция пятого измерения представлялась чем-то заимствованным из книг Герберта Уэллса или бульварной прессы, а никак не подлинной наукой. Помимо времени, не существовало никаких видимых свидетельств наличия других измерений дополнительно к длине, ширине и высоте. Теория, использующая пять измерений, казалась такой же невероятной, как если бы учила проходить сквозь стены или добывать золото из воздуха.
Калуца опередил скептиков, использовав в своей теории цилиндрические условия, чтобы сделать прямое наблюдение пятого измерения невозможным. Также как хомячок, который бегает в колесе, никуда не сдвигается, в теории Калуцы все наблюдаемые величины не изменяются при перемещении в пятом измерении. Поскольку пятое измерение закольцовано, оно не дает заметных эффектов, кроме своего неявного воздействия, привносящего электромагнетизм в общую теорию относительности. Пятое измерение надежно спрятано за сценой, поэтому любые возражения экспериментаторов могли быть сняты.
Первой реакцией Эйнштейна было желание похвалить статью Калуцы как превосходящую статью Вейля. В отличие от теории Вейля, она не искажала известные соотношения, такие как величины пространственно-временных интервалов. Однако, выполнив ряд вычислений, основанных на теории Калуцы, Эйнштейн поскучнел. Пытаясь описать движение электронов при совместном воздействии электромагнитного и гравитационного полей, он не смог получить разумное решение. Вместо этого он столкнулся с математическим препятствием в виде сингулярностей — мест, где одна или несколько величин становятся бесконечными. Нужно было каким-то образом удалить из теории эти проблемные точки, как удаляют больной зуб.