Имитационное моделирование
Шрифт:
Введение
Благодаря интенсивному развитию информатики и компьютерных технологий стало намного проще решать сложные задачи, требующие больших временных и финансовых затрат. Упростить их решение возможно с использованием моделирования.
Одним из наиболее распространенных и удобных способов моделирования сложных систем является имитационное компьютерное моделирование объектов и процессов реального мира.
Невозможно сразу моделировать какой-либо процесс, для этого необходимо специальное обучение способам, приемам и технологиям компьютерного имитационного моделирования (ОПК-3).
Специалист, приступая к решению задачи, должен знать основы динамических
При обучении моделированию сложных систем могут быть использованы различные среды и методологии разработки аналитических и имитационных моделей сложных систем: MvStudium, MATLAB, Arena, GPSS, Extend, iThinkAnalyst, ProcessModel и др. (ОПК-3). Особое место среди сред разработки компьютерных моделей сложных систем принадлежит многоподходной среде моделирования имитационных моделей – AnyLogic. Разные средства спецификации и анализа результатов, имеющиеся в AnyLogic, позволяют строить модели (динамические, дискретно-событийные, агентные), имитирующие практически любой реальный процесс, а также конструировать и многие другие модели, выполнять анализ моделей на компьютере без проведения реальных экспериментов и самостоятельных сложных вычислений (ПК-8, ПК-10). Но для возможности оперировать этой программной средой и получать при моделировании верные результаты пользователь AnyLogic должен овладеть технологией работы в среде, понять ее функциональные особенности, в этих целях мы представляем учебное пособие по разработке компьютерных моделей сложных систем в среде AnyLogic [2].
Моделирование – метод решения задач, при использовании которого исследуемая система заменяется более простым объектом, описывающим реальную систему и называемым моделью.
Моделирование применяется в случаях, когда проведение экспериментов над реальной системой невозможно или нецелесообразно, например из-за высокой стоимости или длительности проведения эксперимента в реальном масштабе времени.
Руководствуясь жизненным опытом и научными знаниями, человек строит модели – от бумажных корабликов до картины мира. Чем они богаче и чем точнее мы можем ими оперировать, тем развитей наше сознание, наша «самая важная модель» соответствует реальности и находит способы ее изменения [1].
Моделирование – самое эффективное средство поддержки принятия решений, а по словам Ричарда Докинза – «один из самых интересных способов предсказывать будущее» [4].
Теоретические предпосылки этого утверждения формировались на протяжении веков. В основу математического моделирования легли математический анализ, теория вероятностей, численные методы, теория подобия. В ХХ в. появилась база практического приложения моделей: математическое программирование; теория массового обслуживания; теория алгоритмов; теория систем; кибернетика (ПК-8).
Другая, «фактологическая», основа моделирования – стремительно растущий потенциал знаний фундаментальных и прикладных наук.
В сочетании с современным технологическим прорывом эти основы создают необычайные возможности построения моделей, ограниченные лишь смелостью исследователя. Перечислим только злободневные глобальные темы, которые проходят непрерывную проверку моделированием: экономика, политика, экология.
Моделирование уверенно помогает понять, как устроен мир. Можно надеяться, что с его помощью мы когда-нибудь узнаем, как работает и наша «самая важная модель» [1].
Различают физическое и математическое
Имитационная модель – это компьютерная программа, которая описывает структуру и воспроизводит поведение реальной системы во времени. Имитационная модель позволяет получать подробную статистику о различных аспектах функционирования системы в зависимости от входных данных (ОПК-3).
Имитационное моделирование – разработка компьютерных моделей и постановка экспериментов на них. Целью моделирования в конечном счете является принятие обоснованных, целесообразных управленческих решений; подготовка студентов к решению задач, связанных с процессами анализа, прогнозирования, моделирования в рамках профессионально ориентированных информационных систем сферы инноватики.
Задачи, решаемые в учебном пособии «Имитационное моделирование»:
• сформировать целостное представление о системе экономико-математических моделей и месте имитационных моделей, а также изучить процессы массового обслуживания;
• научить выполнять имитацию инновационного объекта в трех измерениях: материальном, денежном и информационном;
• произвести экономическое прогнозирование и предвидение развития экономических процессов;
• сформировать у студентов навыки, необходимые для выработки управленческих решений.
Компьютерное моделирование становится сегодня обязательным этапом в принятии ответственных решений во всех областях деятельности человека в связи с усложнением систем, в которых человек должен действовать и которыми он должен управлять. Знание принципов и возможностей имитационного моделирования, умение создавать и применять модели являются необходимыми требованиями к инженеру, менеджеру, бизнес-аналитику [4].
Глава 1
Методологические основы имитационного моделирования
1.1. Моделирование как научный метод
Моделирование является одним из способов решения практических задач. Зачастую решение проблемы нельзя найти путем проведения натурных экспериментов: строить новые объекты, разрушать или вносить изменения в уже имеющуюся инфраструктуру может быть слишком дорого, опасно или просто невозможно. В таких случаях целесообразно построить модель реальной системы, т. е. описать ее на языке моделирования. Данный процесс подразумевает переход на определенный уровень абстракции, опуская несущественные детали, с учетом только того, что считаем важным. Система в реальном мире всегда сложнее своей модели (рис. 1.1) [6].
Рис. 1.1. Моделирование реальных систем
Все этапы разработки модели – проекция реального мира в мир моделей, выбор уровня абстракции и выбор языка моделирования менее стандартизированы, чем процесс использования моделей для решения задач. Моделирование до сих пор больше искусство, чем наука.
После создания модели – а иногда и в процессе разработки – мы начинаем исследовать структуру и понимать поведение системы, проверять, как она ведет себя при определенных условиях, сравнивать различные сценарии и оптимизировать ее. Когда оптимальное решение будет найдено, мы сможем применить его в реальном мире.