Информатика: аппаратные средства персонального компьютера
Шрифт:
Воспользуемся теперь табличным процессором MS Excel. Для запуска программы Excel выполним команду: [Кнопка Пуск – Программы – MS Office ХР – Microsoft Excel]. В ячейки А1, В1, С1, D1, E1, F1 открывшегося окна Excel запишем буквенные обозначения вероятностей Р1, Р2, P3, Р4, P5, P6 а в ячейку G1 – количество информации I, которое необходимо определить. Для написания нижних индексов
После записи значений в ячейки необходимо установить в них формат числа. Для этого необходимо выполнить следующую команду: [Формат – Ячейки – Число – Числовой (устанавливаем число десятичных знаков, равное двум) ]. Устанавливаем в ячейке G2 тот же числовой формат. В ячейку G2 записываем выражение = – (A2*LOG(A2;2) + B2*LOG(B2;2) + C2*LOG(C2;2) + D2*LOG(D2;2) + E2*LOG(E2;2) + F2*LOG(F2;2) ). После нажатия на клавиатуре компьютера клавиши <Enter>, в ячейке G2 получим искомый результат – I = 2,52 бит (рис. 1.4).
Рис. 1.4. Результат вычисления количества информации
Определим, какое количество байт и бит информации содержится в сообщении, если его объем составляет 0,25 Кбайта.
Решение.
С помощью калькулятора определим количество байт и бит информации, которое содержится в данном сообщении:
I = 0,25 Кбайт · 1024 байт/1 Кбайт = 256 байт;
I = 256 байт · 8 бит/1 байт = 2048 бит.
Определим мощность алфавита, с помощью которого передано сообщение, содержащее 4096 символов, если информационный объем сообщения составляет 2 Кбайта.
Решение.
С помощью калькулятора переведем информационный объем сообщения из килобайт в биты:
V = 2 Кбайт 1024 байт/1 Кбайт = 2048 байт 8 бит/1 байт = 16384 бит.
Определим количество бит, приходящееся на один символ (информационный объем одного символа) в алфавите:
I = 16 384 бит/4096 = 4 бит.
Используя формулу (1.3), определим мощность алфавита (количество символов в алфавите) :
N = 2I = 24 = 16.
Как уже отмечалось, если принять во внимание только свойство информации, связанное с ее смысловым содержанием, то при определении понятия информации можно ограничиться смысловым, или семантическим, уровнем рассмотрения этого понятия.
На семантическом уровне информация рассматривается по ее содержанию, отражающему состояние отдельного объекта или системы в целом. При этом не учитывается ее полезность для получателя информации. На данном уровне изучаются отношения между знаками, их предметными и смысловыми значениями (см. рис. 1.1), что позволяет осуществить выбор смысловых единиц измерения информации. Поскольку смысловое содержание информации передается с помощью сообщения, т. е. в виде совокупности знаков (символов), передаваемых с помощью сигналов от источника информации к приемнику, то широкое распространение для измерения смыслового содержания информации получил подход, основанный на использовании тезаурусной меры. При этом под тезаурусом понимается совокупность априорной информации (сведений), которой располагает приемник информации.
Данный подход предполагает, что для
• стремится к нулю, т. е. пользователь не воспринимает поступившее сообщение;
• стремится к бесконечности, т. е. пользователь досконально знает все об объекте или явлении и поступившее сообщение его не интересует;
• согласован со смысловым содержанием сообщения, т. е. поступившее сообщение понятно пользователю и несет новые сведения.
Два первых предельных случая соответствуют состоянию, при котором количество семантической информации, получаемое пользователем, минимально. Третий случай связан с получением максимального количества семантической информации. Таким образом, количество семантической информации, получаемой пользователем, является величиной относительной, поскольку одно и то же сообщение может иметь смысловое содержание для компетентного и быть бессмысленным для некомпетентного пользователя.
Поэтому возникает сложность получения объективной оценки количества информации на семантическом уровне ее рассмотрения и для получения такой оценки используют различные единицы измерения количества информации: абсолютные или относительные. В качестве абсолютных единиц измерения могут использоваться символы, реквизиты, записи и т. д., а в качестве относительной – коэффициент содержательности, который определяется как отношение семантической информации к ее объему. Например, для определения на семантическом уровне количества информации, полученной студентами на занятиях, в качестве единицы измерения может быть принят исходный балл (символ), характеризующий степень усвояемости ими нового учебного материала, на основе которого можно косвенно определить количество информации, полученное каждым студентом. Это количество информации будет выражено через соответствующий оценочный балл в принятом диапазоне оценок.
При семантическом подходе к оценке количества информации и выборе единицы измерения существенным является вид получаемой информации (сообщения). Так, данный подход к оценке количества экономической информации позволяет выявить составную единицу экономической информации, состоящую из совокупности других единиц информации, связанных между собой по смыслу. Элементарной составляющей единицей экономической информации является реквизит, т. е. информационная совокупность, которая не поддается дальнейшему делению на единицы информации на смысловом уровне. Деление реквизитов на символы приводит к потере их смыслового содержания. Каждый реквизит характеризуется именем, значением и типом. При этом под именем реквизита понимается его условное обозначение, под значением – величина, характеризующая свойства объекта или явления в определенных обстоятельствах, под типом – множество значений реквизита, объединенных определенными признаками и совокупностью допустимых преобразований.
Реквизиты принято делить на реквизиты-основания и реквизиты-признаки [2].
Реквизиты-основания характеризуют количественную сторону экономического объекта, процесса или явления, которые могут быть получены в результате совершения отдельных операций – вычислений, измерений, подсчета натуральных единиц и т. д. В экономических документах к ним можно отнести, например, цену товара, его количество, сумму и т. п. Реквизиты-основания чаще всего выражаются в цифрах, над которыми могут выполняться математические операции.