Чтение онлайн

на главную

Жанры

Интернет-журнал "Домашняя лаборатория", 2007 №10
Шрифт:

Поскольку в любой замкнутой системе энтропия непрерывно и необратимо возрастает, то со временем в такой системе, как наша Вселенная, исчезнет всякая структурированность и должен воцариться хаос. В частности, установится единая температура (которая, соответственно, будет лишь немногим выше абсолютного нуля). Эту гипотетическую ситуацию называют "тепловой смертью Вселенной"; рассуждения на эту тему были очень модны в конце прошлого века. Надо сказать, что закон неубывания энтропии — со всеми его глобально-пессимистическими следствиями — вообще создает массу неудобств для мироощущения любого нормального человека. Неудивительно, что регулярно возникает вопрос — а нельзя ли найти способ как-нибудь объегорить ВНТ и победить возрастание энтропии?

Те из вас, кто читал "Понедельник начинается в субботу", возможно, помнят работавших в НИИЧАВО вахтерами демонов Максвелла; кое-кто, возможно, даже прочел в "Словаре-приложении" разъяснение Стругацких, что существа эти были первоначально созданы "для вероломного нападения на Второе начало термодинамики". Суть мысленного эксперимента, осуществленного Дж. Максвеллом (1860) заключается в следующем. Есть два сосуда с газом, соединенные трубкой; система находится в тепловом равновесии — усредненные энергии молекул любых двух порций газа равны между собой. Это вовсе не означает, что все молекулы одинаковые: среди них есть более быстрые ("горячие") и более медленные ("холодные"), просто на больших числах это все усредняется. А что, если несколько быстрых молекул — чисто случайно! — перейдут из правого резервуара в левый, а несколько медленных — из левого в правый? Тогда левый сосуд несколько нагреется, а правый охладится (при этом суммарная энергия системы останется неизменной); в системе возникнет разность потенциалов, то есть — возрастет упорядоченность, а энтропия снизится. В реальности такие отклонения будут — по теории вероятностей — сугубо временными. Давайте, однако вообразим, что в соединяющей сосуды трубке сидит крошечный демон, который будет пропускать быстрые молекулы только слева направо, а медленные — справа налево. Через некоторое время все быстрые молекулы соберутся в правом сосуде, а все медленные — в левом, левый сосуд нагреется, а правый — охладится; значит, энтропия отступила. Понятное дело, что такого демона в действительности не существует, но может быть мы со временем сумеем создать некое устройство, работающее на этих принципах?

К сожалению, не сумеем. (Кстати, сам Максвелл и не думал покушаться на ВНТ: ему-то демон был нужен просто для объяснения температуры через скорость движения молекул — в противовес тогдашним представлениям о "невидимой жидкости-теплороде"). Все дело в том, что наши резервуары с газом не являются полной системой: полная же система состоит из газа плюс демона. "Отлавливая" молекулы с соответствующими параметрами, наш демон вынужден будет пахать как трактор. Поэтому повышение собственной энтропии демона с лихвой перекроет то понижение энтропии, которое он произведет в газе. Одним словом, мы имеем дело с классическим вечным двигателем второго рода.

Однако постойте: энтропию газа-то демон, как ни крути, понизил… А ведь это идея!.. Пускай суммарная энтропия некой системы (скажем, Вселенной) необратимо возрастает — ну и Бог с ней. Мы же займемся тем, что будем локально понижать энтропию и повышать упорядоченность — настолько, насколько нам нужно. Конечно, в других частях системы энтропия при этом вырастет, но нам-то что за дело? Реализуем ли такой сценарий? Разумеется — ведь саму жизнь вполне можно рассматривать как пример такого локального нарушения закона неубывания энтропии. Основатель квантовой механики Э. Шредингер в своей замечательной книге "Что такое жизнь с точки зрения физика?" именно так и определяет ее — как работу специальным образом организованной системы по понижению собственной энтропии за счет повышения энтропии окружающей среды.

Этот подход стал достаточно традиционным, однако он таит в себе ряд подводных камней — не научного, правда, а скорее философского плана. В рамках такого взгляда на проблему энтропия (вполне заурядная физическая величина) незаметно приобретает отчетливые черты некого Мирового Зла, а нормальное функционирование живых систем вдруг разрастается до масштабов глобального противостояния сил Света и Тьмы. (Следует заметить, что оные живые системы выглядят при этом отнюдь не толкиеновскими рыцарями, обороняющими Пеленорские поля от воинства Черного Властелина, а перепуганным мальчишкой, который безнадежно отчерпывает ржавой консервной банкой протекающую изо всех щелей лодку). Поэтому нет ничего удивительного в том, что некоторые ученые на полном серьезе считают Второе начало термодинамики физическим воплощением Дьявола. Ну а раз есть Дьявол, то возникает необходимость для равновесия ввести в картину Мира и Бога (как некое антиэнтропийное, организующее начало); с этого самого момента весь этот комплекс проблем, строго говоря, изымается из сферы науки и переходит в сферу богословия. В любом случае, жизнь в своем противостоянии закону неубывания энтропии выглядит обреченной на сугубо оборонительную стратегию, что исключает повышение сложности ее организации. В рамках такого подхода дилемма, сформулированная Р. Кэллуа (1973) — "Могут ли и Карно, и Дарвин быть правы?" действительно кажется не имеющей решения.

Здесь необходимо подчеркнуть одно фундаментальное различие между термодинамикой (связанной "кровным родством" с химией) с одной стороны, и всей прочей физикой (выросшей, так или иначе, из классической механики) с другой. В классической динамике все процессы является обратимыми (это формулировали в явном виде все ее основатели, например, Галилей и Гюйгенс), а картина мира — детерминистической: если некое существо ("демон Лапласа") будет знать все параметры состояния Вселенной в некий момент времени, то оно сможет и точно предсказать ее будущее, и до мельчайших деталей реконструировать прошлое. Из обратимости же физических процессов следует, что время не является объективной реальностью, а вводится нами лишь для собственного удобства — как нумерация порядка событий: планеты могут обращаться вокруг Солнца как вперед, так и назад по времени, ничего не изменяя в самих основах ньютоновской системы. Революция, произведенная в физике Эйнштейном, этой сферы не затронула, а его окончательное суждение на сей предмет гласит: "Время (как и необратимость) — не более чем иллюзия". Случайности также не нашлось места в той картине Мира, что создана Эйнштейном; широко известна его чеканная формулировка — "Бог не играет в кости (God casts the die, not the dice)". Даже квантовая механика, наиболее отличная по своей "идеологии" от всех прочих физических дисциплин, сохраняет этот взгляд на проблему времени: в лежащем в ее основе уравнении Шредингера время остается однозначно обратимым.

Принципиально иную картину Мира рисовала термодинамика: здесь аналогом Вселенной являлся не часовой механизм с бесконечным заводом, а паровой двигатель, в топке которого безвозвратно сгорает топливо. Согласно ВНТ, эта мировая машина постепенно сбавляет обороты, неотвратимо приближаясь к тепловой смерти, а потому ни один момент времени не тождественен предыдущему. События в целом невоспроизводимы, а это означает, что время обладает направленностью, или, согласно выражению А. Эддингтона, существует стрела времени. Осознание принципиального различия между двумя типами процессов — обратимыми, не зависящими от направления времени, и необратимыми, зависящими от него — составляет саму основу термодинамики. Понятие энтропии для того и было введено, чтобы отличать первые от вторых: энтропия возрастает только в результате необратимых процессов. При этом, как заключает И. Пригожин, "стрела времени" проявляет себя лишь в сочетании со случайностью: только если система ведет себя достаточно случайным образом, в ее описании возникает реальное различие между прошлым и будущим, и, следовательно, необратимость. Картина Мира становится стохастической — то есть точно предсказать изменения Мира во времени принципиально невозможно, а потому демона Лапласа следует отправить в отставку за полной его бесполезностью.

В XIX веке изучали лишь наиболее простые, замкнутые системы, не обменивающиеся с внешней средой ни веществом, ни энергией; при этом в центре внимания находилась конечная стадия термодинамических процессов, когда система пребывает в состоянии, близком к равновесию. Тогдашняя термодинамика была равновесной термодинамикой. Именно равновесные состояния (в разреженном газе) изучал Больцман, с чем и была связана постигшая его творческая неудача: горячо восприняв идею эволюции (хорошо известна его оценка: "Девятнадцатый век — это век Дарвина"), он потратил массу сил и времени на то, чтобы дать дарвинизму строгое физическое обоснование — но так и не сумел этого сделать[10]. Более того, введенный им принцип порядка налагает прямой запрет на возникновение организованных (и потому менее вероятных) структур из неорганизованных — т. е. на прогрессивную эволюцию. На неравновесные же процессы в то время смотрели как на исключения, второстепенные детали, не заслуживающие специального изучения.

Ныне ситуация коренным образом изменилась, и как раз замкнутые системы теперь рассматривают как сравнительно редкие исключения из правила. При этом было установлено, что в тех открытых системах, что находятся в сильно неравновесных условиях, могут спонтанно возникать такие типы структур, которые способны к самоорганизации, т. е. к переходу от беспорядка, "теплового хаоса", к упорядоченным состояниям. Создатель новой, неравновесной термодинамики Пригожин назвал эти структуры диссипативными — стремясь подчеркнуть парадокс: процесс диссипации (т. е. безвозвратных потерь энергии) играет в их возникновении конструктивную роль. Особое значение в этих процессах имеют флуктуации — случайные отклонения некой величины, характеризующей систему из большого числа единиц, от ее среднего значения (одна из книг Пригожина так и называется — "Самоорганизация в неравновесных системах. От диссипативных структур к упорядочению через флуктуации").

Одним из простейших случаев такой спонтанной самоорганизации является так называемая неустойчивость Бенара. Если мы будем постепенно нагревать снизу не слишком толстый слой вязкой жидкости, то до определенного момента отвод тепла от нижнего слоя жидкости к верхнему обеспечивается одной лишь теплопроводностью, без конвекции. Однако когда разница температур нижнего и верхнего слоев достигает некоторого порогового значения, система выходит из равновесия и происходит поразительная вещь. В нашей жидкости возникает конвекция, при которой ансамбли из миллионов молекул внезапно, как по команде, приходят в согласованное движение, образуя конвективные ячейки в форме правильных шестиугольников. Это означает, что большинство молекул начинают двигаться с почти одинаковыми скоростями, что противоречит и положениям молекулярно-кинетической теории, и принципу порядка Больцмана из классической термодинамики. Если в классической термодинамике тепловой поток считается источником потерь (диссипации), то в ячейках Бенара он становится источником порядка. Пригожин характеризует возникшую ситуацию как гигантскую флуктуацию, стабилизируемую путем обмена энергией с внешним миром.

Популярные книги

Я – Стрела. Трилогия

Суббота Светлана
Я - Стрела
Любовные романы:
любовно-фантастические романы
эро литература
6.82
рейтинг книги
Я – Стрела. Трилогия

Камень. Книга 4

Минин Станислав
4. Камень
Фантастика:
боевая фантастика
7.77
рейтинг книги
Камень. Книга 4

Измена. Верни мне мою жизнь

Томченко Анна
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Верни мне мою жизнь

Возвышение Меркурия. Книга 2

Кронос Александр
2. Меркурий
Фантастика:
фэнтези
5.00
рейтинг книги
Возвышение Меркурия. Книга 2

Вечная Война. Книга VI

Винокуров Юрий
6. Вечная Война
Фантастика:
боевая фантастика
рпг
7.24
рейтинг книги
Вечная Война. Книга VI

Измена. Избранная для дракона

Солт Елена
Любовные романы:
любовно-фантастические романы
3.40
рейтинг книги
Измена. Избранная для дракона

Релокант. Вестник

Ascold Flow
2. Релокант в другой мир
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Релокант. Вестник

Игрок, забравшийся на вершину (цикл 7 книг)

Михалек Дмитрий Владимирович
Игрок, забравшийся на вершину
Фантастика:
фэнтези
6.10
рейтинг книги
Игрок, забравшийся на вершину (цикл 7 книг)

#Бояръ-Аниме. Газлайтер. Том 11

Володин Григорий Григорьевич
11. История Телепата
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
#Бояръ-Аниме. Газлайтер. Том 11

Титан империи 7

Артемов Александр Александрович
7. Титан Империи
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Титан империи 7

Я – Орк. Том 5

Лисицин Евгений
5. Я — Орк
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Я – Орк. Том 5

Идеальный мир для Социопата 5

Сапфир Олег
5. Социопат
Фантастика:
боевая фантастика
рпг
5.50
рейтинг книги
Идеальный мир для Социопата 5

Болотник

Панченко Андрей Алексеевич
1. Болотник
Фантастика:
попаданцы
альтернативная история
6.50
рейтинг книги
Болотник

Сумеречный стрелок 8

Карелин Сергей Витальевич
8. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Сумеречный стрелок 8