Интернет-журнал "Домашняя лаборатория", 2007 №10
Шрифт:
Объем вещества, охваченный конвекционным током, называют конвективной ячейкой; весь объем греющегося чайника представляет собой единую ячейку, однако если мы станем нагревать широкий таз двумя удаленными друг от друга горелками, то у нас возникнут две относительно независимые системы циркуляции воды, взаимодействующие между собой. Ячейки бывают двух типов — открытые и закрытые. По краям открытых ячеек происходит подъем, а в центре — опускание вещества, то есть в поверхностном слое вещество движется от краев к центру, а в придонном — от центра к краям; в закрытых ячейках, соответственно, все наоборот (рисунок 11).
РИСУНОК 11. Возникновение конвективной ячейки в нагреваемой жидкости; стрелками указано направление токов (справа — вид сбоку,
(а) — ячейка открытого типа, (б) — ячейка закрытого типа, (в) — двуячеистая конвекция — две ячейки открытого типа.
Литосферные плиты с "впаянными" в них континентами оказываются вовлеченными в движение вещества мантии в поверхностном слое конвективных ячеек, и перемещаются вместе с ним (мантийным веществом) от областей его подъема к областям опускания (в кастрюле с кипящим молоком — ячейке закрытого типа — пенка собирается у стенок). В толстостенной сферической оболочке (каковой является мантия планеты) лишь две схемы организации конвекционного процесса могут быть относительно устойчивы. Одной — более простой — будет единственная ячейка, охватывающая собою всю мантию, с одним полюсом подъема вещества и одним же полюсом его опускания. В этом случае континенты собираются воедино вокруг полюса опускания, освобождая вокруг полюса подъема "пустое" — океанское — полушарие; такая ситуация существовала, например, во времена Пангеи.
Другая — более сложная — схема действует в наши дни. Это пара открытых ячеек типа "лоскутов теннисного мяча" — очень точное и наглядное определение. Теннисный мяч состоит из двух половинок, соединенных между собой так, что соединяющий их шов волнообразно изогнут относительно экватора двумя гребнями и двумя ложбинами; лоскуты теннисного мяча (в отличие от детского резинового) вытянуты, и их продольные оси взаимно перпендикулярны (см. рисунок 12). Зону подъема вещества, являющуюся одновременно и границей между этими ячейками открытого типа — тот самый волнообразно изогнутый "шов" — и составляет глобальная система срединно-океанических хребтов. Зонами же опускания при такой схеме являются продольные оси ячеек (более или менее перпендикулярные друг другу), вдоль которых должны выстраиваться две цепочки материков. Примерно такая картина и наблюдается на Земле в настоящее время: одну группу материков образуют Африка, Евразия и Австралия, другую — Северная и Южная Америка и Антарктида. (Заметим, что в принципе возможна и такая двухъячеистая конвекция, когда граница между ячейками полностью совпадает с экватором планеты, однако это будет просто частный случай крайне малого искривления "шва".)
РИСУНОК 12.
(а) — теннисный мяч, состоящий из двух лоскутов;
(б) — схема поверхности планеты, имеющей две конвективные ячейки: "шов" — линия подъема мантийного вещества (срединно океанические хребты), материки выстраиваются вдоль линии опускания мантийного вещества (оси каждого из лоскутов);
(в) — поверхность современной Земли (заштрихован американо-антарктический "лоскут").
При одноячеистой конвекции положение полюсов подъема и опускания вещества всегда будет несколько отличаться от идеального (точно по диаметру планеты); там, где соединяющие их "меридианы" будут самыми длинными, образуется застойная область, в которой вещество не теряет железа и потому постепенно оказывается тяжелее окружающей его среды. Через некоторое время оно "проваливается" вглубь мантии, создавая второй полюс опускания, и превращая конвекцию в двухъячеистую. Двухъячеистая конвекция постепенно ослабляется и затем переходит в одноячеистую (одна из ячеек как бы "съедает" вторую), и конвекционный цикл начинается заново. Таким образом, взаиморасположение континентов определяется фазой конвекционного цикла в мантии — и наоборот: фаза конвекционного цикла, имевшая место в некую геологическую эпоху, может быть определена исходя из взаиморасположения континентов, реконструированного палеомагнитными, палеоклиматологическими и др. методами. Понятно, что все эти изменения весьма существенно влияют на климат соответствующей эпохи, а через него — на функционирование ее биосферы.
4. Происхождение жизни: абиогенез и панспермия. Гиперцикл. Геохимический подход к проблеме.
Завершив раздел, посвященный эволюции самой Земли, мы приступаем теперь к изучению эволюции жизни на ней. Сразу оговорюсь: я не собираюсь здесь ни углубляться в дебри определений того, что такое "жизнь", ни обсуждать чисто химические аспекты этого явления — это увело бы нас слишком далеко от темы спецкурса[7]. Наш подход к проблеме жизни на Земле будет сугубо функциональным, и в
Что же касается происхождения жизни на Земле, то обычно проблему эту, еще со времен Э. Геккеля (1866), сводят к чисто химической задаче: как синтезировать сложные органические макромолекулы (прежде всего — белки и нуклеиновые кислоты) из простых (метана, аммиака, сероводорода и пр.), которые составляли первичную атмосферу Земли. Следует честно признать, что даже эта, в общем-то техническая, задача чрезвычайно далека от своего разрешения. В двадцатые годы А.И. Опарин и Дж. Холдейн экспериментально показали, что в растворах высокомолекулярных органических соединений могут возникать зоны повышенной их концентрации — коацерватные капли — которые в некотором смысле ведут себя подобно живым объектам: самопроизвольно растут, делятся и обмениваются веществом с окружающей их жидкостью через уплотненную поверхность раздела. Затем, в 1953 году, С. Миллер воспроизвел в колбе газовый состав первичной атмосферы Земли (исходя из состава современных вулканических газов), и при помощи электрических разрядов, имитирующих грозы, синтезировал в ней ряд органических соединений — в том числе аминокислоты. Через некоторое время С. Фоксу удалось соединить последние в короткие нерегулярные цепи — безматричный синтез полипептидов; подобные полипептидные цепи были потом реально найдены, среди прочей простой органики, в метеоритном веществе. Этим, собственно говоря, и исчерпываются реальные успехи, достигнутые в рамках концепции абиогенеза — если не считать того, что было ясно осознано по крайней мере одно фундаментальное ограничение на возможность синтеза "живых" (т. е. биологически активных) макромолекул из более простых органических "кирпичиков".
Дело в том, что многие органические соединения представляют собой смесь двух так называемых оптических изомеров — веществ, имеющих совершенно одинаковые химические свойства, но различающихся так называемой оптической активностью. Они по-разному отклоняют луч поляризованного света, проходящий через их кристаллы или растворы, и в соответствии с направлением этого отклонения называются право- или левовращающими; свойством этим обладают лишь чистые изомеры, смеси же их оптически неактивны. Явление это связывают с наличием в молекуле таких веществ так называемого асимметричного атома углерода, к четырем валентностям которого могут в разном порядке присоединяться четыре соответствующих радикала (рисунок 13). Так вот, эти химически идентичные вещества, как выяснил еще в 1848 г. Л. Пастер, вовсе не являются таковыми для живых существ: плесневый гриб пенициллиум, развиваясь в среде из виноградной кислоты, "поедает" лишь ее правовращающий изомер, а в среде из молочной кислоты — левовращающий (на этом, кстати, основан один из методов разделения оптических изомеров), человек легко определяет на вкус изомеры молочной кислоты.
РИСУНОК 13. "Левая" и "правая" молекулы аланина.
Сейчас известно, что все белки на нашей планете построены только из левовращающих аминокислот, а нуклеиновые кислоты — из правовращающих сахаров; это свойство, называемое хиральной чистотой, считается одной из фундаментальнейших характеристик живого. А поскольку при любом абиогенном синтезе (например, в аппарате Миллера) образующиеся аминокислоты будут состоять из приблизительно равных (по теории вероятностей) долей право- и левовращающих изомеров, то в дальнейшем — при синтезе из этого "сырья" белков — перед нами встанет задача: как химическими методами разделить смесь веществ, которые по определению химически идентичны? (Не зря оптической активностью обладают лишь природные сахара — и ни один из синтетических, а упомянутые выше полипептиды из метеоритного вещества состоят из равных долей право- и левовращающих аминокислот.)
Между тем, даже успешный синтез "живых" макромолекул (до которого еще, что называется, "семь верст — и все лесом") сам по себе проблемы не решает. Для того, чтобы макромолекулы заработали, они должны быть организованы в клетку — причем никаких возможностей для "промежуточной посадки" в ходе этого немыслимой сложности "перелета" вроде бы не просматривается: все так называемые доклеточные формы жизни — вирусы — являются облигатными (т. е. обязательными) внутриклеточными паразитами, а потому навряд ли могут являться предшественниками клеток. Пропасть, отделяющая полный набор аминокислот и нуклеотидов от простейшей по устройству бактериальной клетки, в свете современных знаний стала казаться еще более непреодолимой, чем это представлялось в прошлом веке.