Интернет-журнал "Домашняя лаборатория", 2007 №11
Шрифт:
Для уяснения понятия поля нам следует пойти еще дальше в своих отвлеченных рассуждениях. Удалим одно тело. Теперь представим оставшееся, способное воздействовать на любое проходящее рядом тело. Это воздействие и составляет поле, проявляемое данным телом. При таком подходе поле есть возможность проявления силы. Например, поле тяготения часто изображается в виде стрелок, обращенных в сторону массы, как на рис. 2.2. Это вовсе не физические линии или стрелки в пространстве, а лишь указание на то, что любое, помещенное в любую точку тело будет ощущать действие некой силы в направлении, указанном стрелками.
Рис 2.2. Изображение
Сходным образом линии электрического поля окружают заряд, а линии магнитного поля — магниты. Поскольку железные опилки обладают ярко выраженными магнитными свойствами, на помещаемых в учебниках картинках видно, как эти опилки распределяются вокруг полюсов магнита и делают как бы зримым само магнитное поле.
Вначале полю отводилось место сугубо понятийного средства, но ныне оно играет ключевую роль в физике. Согласно стандартной модели:
— исходными кирпичиками Вселенной являются поля,
— крошечные сгустки энергии (кварки или лептоны) проявляются при перенесении квантовых законов на поля,
— частицы взаимодействуют между собой посредством обмена другими сгустками энергии (бозонами), которые невозможно наблюдать ввиду ограничений, накладываемых принципом неопределенности.
Итак, классическая картина дальнодействующих сил между частицами сменилась взаимодействием, обменом виртуальными сгустками энергии (прежде волнами) между квантованными жгутами энергии поля (прежде частицами). Здесь наблюдается полный разрыв с прежними представлениями.
Стандартная модель включает два вида взаимодействия: сильное и электрослабое.
1. Сильное взаимодействие: частицы, появляющиеся в соответствии с законами квантования ряда полей, называются кварками. Сегодня известно шесть кварков, (и связанных с ними антикварков), входящих в три семейства [или поколения], как показано на рис. 2.3. Вот их названия:
семейство 1: верхний и нижний;
семейство 2: очарованный и странный;
семейство 3: верхний и нижний.
Кварки взаимодействуют друг с другом через сильное взаимодействие, обмениваясь виртуальными частицами, именуемыми глюонами.
2. Злектрослабое взаимодействие: частицы, появляющиеся в соответствии с законами квантования ряда полей, называются лептонами. Существует шесть лептонов (и связанных с ними антилептонов), входящих в три семейства, как показано на рис. 2.4.
Рис. 2.3. Кварки
Рис. 2.4. Лептоны
Вот их названия: семейство 1: семейство 2 семейство 3 электрон и электронное нейтрино; мюон и мюонное нейтрино; тау и тау-нейтрино.
Лептоны взаимодействуют, обмениваясь виртуальными частицами: фотоном, двумя W-бозонами и одним Z-бозоном.
На обобщенном
Рис. 2.5. Основные частицы
В табл. 1 перечислены частицы с их спином, зарядом и массой. Поражает огромный разброс масс — но об этом речь пойдет далее.
Согласно стандартной модели здесь прослеживается механизм функционирования атома. Протоны и нейтроны удерживает в ядре обмен виртуальными глюонами между составляющими эти частицы кварками.
Связь электронов с протонами в ядре обеспечивается обменом виртуальными фотонами. Заметим, что три семейства кварков в точности соотносятся с тремя семействами лептонов. Вот только неизвестно, почему их ровно три. Первое семейство кварков и лептонов стабильно и составляет всю материю вокруг нас. Другие два семейства нестабильны, распадаясь через короткое время на более устойчивых собратьев. Если же говорить о возможности существования большего числа семейств кварков и лептонов, имеется два экспериментальных подтверждения, что таких семейств три. Одно подтверждение получено в 1998 году на усилителе при распаде нейтрального лямбда-гиперона [лямбда-ноль-гиперона] с образованием нейтрино, а другое — из астрономических наблюдений (подробнее см. след, параграф).
Все перечисленные частицы, за исключением глюона и фотона, обладают массой. Нулевая масса фотона обусловливает большую дальность электромагнитного взаимодействия, поскольку его переносчик может перемещаться со скоростью света. Слабое взаимодействие имеет значительно более короткий радиус действия ввиду большой массы его переносчиков, что не позволяет им двигаться столь же быстро, как фотоны. Все кварки и лептоны подчиняются ряду статистических правил, установленных Ферми и Дираком, и обобщенно именуются фермионами. Переносчики взаимодействия подчиняются другому ряду правил, выдвинутых индийским физиком Шатьендранатом Бозе и Эйнштейном, и называются бозонами. (См.: Список идей, 3. Фермионы и бозоны.)
Таблица 1. Основные частицы и их массы
Частицы • Приблизительная масса*
Фермионы
Верхний кварк • 5х10– 3
Нижний кварк • 9х10– 3
Электрон • 0,51х10– 3
Электронное нейтрино • < 7,2х10– 9
Очарованный • 1,35
Странный кварк • 0,175
Мюон • 0,106
Мюонное нейтрино • < 2,7х10– 4
Истинный кварк • 174
Красивый кварк • 4,5
Тау • 1,78
Тау-нейтрино • < 3х10– 2
Бозоны
Фотон •
W+w W- • 80,2
Z • 91,2
Глюон • 0
Хиггса частица (нет пока опытного подтверждения) • 63-800
* Масса дается в единицах энергии, ГВт, равных миллиардам электрон-вольт согласно эйнштейновской формуле эквивалентности массы и энергии, Е = mс2.
<