Интернет-журнал "Домашняя лаборатория", 2007 №12
Шрифт:
Когда при помощи линзы образуется реальное изображение объекта, световые лучи, отражаемые в разные стороны от каждой точки его поверхности, фокусируются линзой и образуют крошечную часть изображения.
Фокусным расстоянием f линзы называется расстояние от линзы до точки формирования изображения далеко расположенного объекта, а оптической силой линзы — величина 1/f в метрах. Единицей оптической силы служит диоптрия.
Увеличением линзы, зависящим от расстояния от объекта до линзы и от фокусного ее расстояния, называется отношение размера изображения к размеру объекта. Изображение бывает меньше объекта, если
Количество деталей, которое можно рассмотреть в изображении, является мерой разрешающей способности оптического устройства, используемого для получения изображения. При прохождении света через апертуру (отверстие) устройства происходит его дифракция. Линзы или кривые зеркала фокусируют свет, поступающий от части объекта в крошечное изображение. Двум близлежащим точкам объекта соответствуют две точки изображения. Если дифракция велика (из-за очень узкой апертуры), то близлежащие точки накладываются друг на друга и сливаются в одно пятно. В таком случае они уже не могут быть различимы. Если сделать апертуру достаточно широкой, то дифракция сократится, две точки будут различимы и разрешающая способность устройства повысится. Число деталей, различимых при увеличенной апертуре, увеличится. Так, в 10-сантиметровый широкий телескоп можно рассмотреть больше деталей, чем в узкий. Наземные телескопы диаметром более 10 см не улучшают изображения, так как атмосфера Земли преломляет свет и затрудняет получение изображения. Таким образом, увеличение объектов зависит от фокусного расстояния линз, а разрешающая способность — от ширины линз. Линза с небольшим фокусным расстоянием дает большее увеличение, но если ширина линзы не меняется, то количество различимых деталей остается прежним, так как разрешающая способность не меняется.
См. также статьи «Дифракция», «Оптические изображения 1».
ОПТИЧЕСКИЕ СПЕКТРЫ 1 — НЕПРЕРЫВНЫЕ СПЕКТРЫ
Спектром называется распределение энергий частиц в потоке частиц или фотонов в электромагнитном излучении. Фотон — это квант электромагнитного поля, переносчик электромагнитного излучения. Каждый фотон обладает определенным количеством энергии, зависящим от длины его волны. Спектр солнечного света, который можно наблюдать на примере радуги, состоит из фотонов с определенным диапазоном длин волн и, следовательно, с определенным диапазоном энергии. В дождевых каплях свет с разной длиной волны преломляется по-разному и потому мы видим разные цвета радуги.
Спектр солнечного света — непрерывный, так как цвета меняются от фиолетового до красного непрерывно. С помощью линзы можно преломить солнечный свет и свет от лампы накаливания. Цвет же зависит от длины волны, которая может быть меньше 400 нанометров (нм) для фиолетового и более 650 нм для красного света.
Световой фотон испускается, когда электрон в атоме вещества переходит на более низкий энергетический уровень. Энергия фотона равна потере энергии электрона. Лампа накаливания или
Солнце имеют непрерывный спектр, так как электроны в их светящихся частях обладают различным количеством энергии, образуя непрерывный диапазон энергий фотонов. Например, в рентгеновской трубке образуются фотоны с непрерывным спектром энергий, соответствующих длинам волн от 0,001 до 1 нм приблизительно.
См. также статьи «Оптические спектры 2», «Рентгеновские лучи 1 и 2», «Фотон», «Электромагнитные волны».
ОПТИЧЕСКИЕ СПЕКТРЫ 2 — ЛИНЕЙЧАТЫЕ СПЕКТРЫ
Оптическим линейчатым (дискретным) спектром испускания называется спектр света, для которого характерно наличие отдельных цветных линий, соответствующих определенным длинам волн. Цветной спектр возникает, когда источник света испускает фотоны с определенными длинами волн. Атом испускает фотон в случае, когда электрон атома переходит на более низкий энергетический уровень. Свет с линейчатым спектром может быть получен в таких источниках света, как газовая лампа или газоразрядная трубка. Испускающие свет атомы
Можно также получить спектры поглощения, пропуская свет через цветные фильтры, цветные жидкости и гели, а также через прозрачные цветные твердые вещества. Последние поглощают свет с некоторой длиной волны, так что получаемый в результате световой поток лишается некоторого диапазона длин волн. Для оптического линейчатого спектра поглощения характерно наличие темных линий на фоне непрерывного спектра. Он бывает у солнечного света, проходящего через газы, окружающие Солнце, которые поглощают фотоны с определенными длинами волн. Атомы газов подвергаются бомбардировке со стороны всех фотонов, исходящих из фотосферы, со всеми возможными длинами волн. Электроны этих атомов могут поглотить только фотоны определенной энергии. Каждый такой фотон заставляет электрон перейти из внутренней оболочки атома во внешнюю. Далее общий поток света теряет фотоны с этой длиной волны, и потому ей соответствует темная линия солнечного спектра. Линейчатые спектры поглощения можно получить и в лаборатории, пропуская белый свет через какой-либо газ и наблюдая преломление через призму пучка света, поступающего сквозь узкую щель.
См. также статьи «Оптические спектры 1», «Фотон», «Энергетические уровни атомов».
ПЕРЕМЕННЫЙ ТОК
Переменный — это электрический ток, неоднократно меняющий свое направление, обычно с постоянной частотой. Изменяющаяся разность потенциалов (напряжение) между двумя точками цепи заставляет носители заряда постоянно менять свое направление.
• График переменного тока, по вертикальной оси которого отмечаются значения силы тока или разности потенциалов, а по горизонтальной оси — время, имеет вид кривой линии. График тока в цепи, подключенной к обычной
сила тока потребительской сети напрямую или через трансформаторы, всегда представляет собой синусоиду.
• Максимальное значение силы переменного тока или разности потенциалов представляет собой максимальное значение силы тока или разности потенциалов в любом направлении. Интервал между максимальными значениями в одном направлении называется полным циклом.
• Частота переменного тока представляет собой количество полных циклов, совершаемое за единицу времени (секунду). Единицей частоты служит герц (Гц), что соответствует одному циклу в секунду.
• Среднеквадратичное значение силы переменного тока или разности потенциалов равно значению силы постоянного тока (или разности потенциалов), вызывающего ту же мощность в проводнике с данным сопротивлением.
Для синусоидального тока или разности потенциалов среднеквадратичное значение равно отношению
максимальное (пиковое) значение тока/2
Например, среднеквадратичное значение переменного тока в обычной сети равно 230 В; это значит, что нагревательный прибор, подключенный к источнику постоянного напряжения 230 В, будет вырабатывать ту же среднюю мощность, как если бы он был подключен к розетке.
См. также статьи «Разность потенциалов и мощность», «Электромагнитная индукция».
ПОЛНОЕ ВНУТРЕННЕ ОТРАЖЕНИЕ