Интернет-журнал "Домашняя лаборатория", 2007 №8
Шрифт:
Свежий гель кремневой кислоты, в котором на молекулу SiO2 приходится 300 молекул Н2O, очень подвижен. Если же на молекулу SiO2 приходится 30–40 молекул Н2O, то гель твердый, и его можно резать ножом. После сушки при слабом нагревании в нем останется шесть молекул Н2O на молекулу SiO2, и гель можно размолоть до тонкодисперсного состояния. Разотрем такую пробу в ступке или размелем в старой кофемолке. Затем высушим порошок в фарфоровой чашке или тигле, нагревая на бунзеновской горелке. При этом образуется кремневый ксерогель (от греческого xeros — сушить). Это более или
Способность к поглощению воды проверим, поместив немного высушенного геля на часовом стекле во влажный воздух, например на кухне или на открытом воздухе. Станем взвешивать эту пробу сначала через короткие (10 минут) и затем через длительные интервалы времени. Если на листе миллиметровой бумаги построить графическую зависимость прироста массы от времени, то полученная кривая будет заканчиваться площадкой, соответствующей величине насыщения и указывающей на максимальную степень поглощения воды. Правда, при этом известную роль играет относительная влажность воздуха.
Цемент с наполнителем дает бетон
Бетон сейчас, несомненно, является важнейшим строительным материалом. Покрытия автострад, плиты, столбы, балки, конструкции современных жилых домов и промышленных построек выполнены большей частью из бетона. Бетонные смеси различаются плотностью, прочностью и теплоизоляционными свойствами. Объединяет их то, что они все состоят из цемента и через некоторое время после смешивания с водой затвердевают, поглощая влагу. В этом заключается важнейшее отличие бетона от классического известкового раствора, затвердевание которого происходит под влиянием угольной кислоты с выделением воды.
Высококачественный портландцемент получают, обжигая смесь известняка, глины или мергеля и железистых отходов, например доменных шлаков. Этот процесс протекает при температуре около 1450 °C в огромной (длиннее 100 м) вращающейся трубчатой печи. Важными компонентами портландцемента являются ди- и трехкальциевый силикат, трехкальциевый алюминат и четырехкальциевый алюмоферрит. При затвердевании в результате реакции с водой образуются гидраты силикатов, которые аналогично силикатному гелю, описанному в предыдущем разделе, обволакивают наполнитель и способствуют образованию твердого как камень вещества.
После того, как мы провели уже ряд описанных в предыдущем разделе опытов с гелями, которые имеют различные прочностные свойства, зависящие от способа их получения, в особенности от добавки воды, можем проделать несколько простых опытов по затвердеванию бетона.
Сначала сделаем простую форму для получения цементных брусков. Для этого разделим плоскую сигарную коробку с помощью реек таким образом, чтобы получились одинаковые формы 1–2 см в сечении, а длина их будет равна длине коробки.
В отдельные зоны поместим следующие смеси: 1 часть портландцемента и 1, 3, 5 или 8 частей чистого песка; 1 часть портландцемента, 2 части песка и 2 части кирпичной крошки (измельчим кирпич); 1 часть портландцемента, 3 части песка и 2 кусочка стальной проволоки (старые вязальные спицы), которые нужно положить по возможности параллельно по обе стороны формы и постараться ввести их в бетон.
Перед заполнением форм добавим в смесь немного воды, чтобы получилась влажная, но рассыпчатая масса (как влажная земля). Этими смесями
Наконец мы можем при получении образцов варьировать добавку воды и степень увлажнения во время отверждения. При испытании окажется, что бетон, полученный из исходной смеси высокой влажности или не увлажнявшийся при отверждении, значительно уступает в прочности.
Тепло- и звукоизоляционный газо- или пенобетон получают, добавляя в вязкую бетонную массу порошок карбида алюминия или кальция. Если одновременно добавить поверхностно-активное вещество, например какое-нибудь моющее средство, то получающиеся пузырьки газа будут образовывать особенно тонкую пену.
Наряду с пенобетоном применение пеностекла и строительных частей из легких металлов и пластмасс открывает новые возможности, которые уже с успехом реализованы на опытных строительных объектах.
3. Металлы — основа техники
МЕТАЛЛЫ И ИХ СОЕДИНЕНИЯ
Почти все важнейшие части орудий производства, начиная с простейших механизмов и кончая сложными машинами, изготовлены из металлов. Хотя широко используемые в последнее время пластмассы частично заменяют металлы, производство металлов все время возрастает, и в будущем все равно главным образом из них будут изготовлять большинство промышленных установок, машины, моторы, электрическую проводку, котлы высокого давления и т. д.
Перечислим некоторые характерные свойства металлов: металлы можно отливать, ковать, вальцевать, вытягивать в проволоку, гнуть, сваривать, паять, обтачивать, сверлить, пилить, строгать.
Сплавляя металлы или вводя в них небольшие добавки неметаллов, можно получать материалы, отвечающие специальным требованиям. Инструменты для обработки металлов (токарные резцы, сверла, специальные пилы и т. д.) должны обладать повышенной твердостью, а листовые или винтовые рессоры, напротив, отличаться эластичностью и одновременно прочностью. От зубчатых колес, валов, болтов и гаек требуется особенная прочность на излом, от тросов и цепей — чрезвычайное сопротивление растяжению, а колбам, цилиндрам, котлам высокого давления приходится переносить высокую температуру, огромное давление и воздействие химически агрессивных веществ.
Без металлов не было бы электротехники. Хорошая проводимость электрического тока характерна для всех «настоящих металлов» и не присуща неметаллическим материалам.
Из более чем 90 химических элементов, встречающихся в природе, около 65 причисляют к металлам. Некоторые элементы, такие как сурьма или полупроводник германий, стоят на границе между металлами и неметаллами.
Еще 200 лет назад большая часть этих металлов не имела никакого технического значения. Довольствовались обычными, в основном легко получаемыми, металлами. Только с наступлением атомного века, при постройке сверхзвуковых самолетов и космических ракет, требования к металлическим материалам резко повысились. Уже в начале нашего века потребности авиационной промышленности привели к развитию производства легких металлов: алюминия и магния. Многочисленные изобретения сделали возможным создание установок для получения таких металлов, названия которых сравнительно недавно были известны немногим. Это прежде всего титан и цирконий, которые встречаются часто, но в основном рассеяны в горных породах и редко встречаются в виде чистых руд. Техническое значение приобрели также бериллий, гафний, индий, ниобий и другие экзотические металлы.