Чтение онлайн

на главную

Жанры

Интернет-журнал "Домашняя лаборатория", 2008 №1
Шрифт:

Кроме красителя в качестве метки можно использовать фермент (иммуноферментный анализ) или радиоактивный изотоп (иммунорадиологический). От чувствительности детекции маркера зависит чувствительность метода анализа.

Радиоактивные метки.

Выбор маркера и способа его «привязки» к антигену является одним из важных этапов в проведении анализа. Первоначально широко применялись радиоизотопные метки (радиоиммунный анализ — РИА), предложенные американскими исследователями (С. А. Берсон, Р. С. Ялоу, 1959). Однако в последние годы все более широкое использование в качестве маркеров находят ферменты. Это обусловлено рядом принципиальных трудностей, связанных с применением изотопных маркеров. Так, изотоп 125I

имеет время полураспада 60 суток, чем ограничивается срок его использования. Изотоп 3Н имеет длительное время жизни (12.5 лет), однако под антитело + биотин действием бэта-излучения происходит распад молекул антигена, в результате чего время жизни меченых 3Н-соединений тоже ограничено. Кроме того, эффективность счета трития существенно ниже, чем 125I. Ограничивающими факторами РИА являются сложность и высокая стоимость оборудования, необходимость централизованной системы распределения иммунохимических наборов, меченных радиоактивными изотопами, определенная опасность изотопов для окружающей среды. Учитывая трудности использования радиоизотопных меток, были предложены в качестве маркеров ферменты.

При иммуноферментном анализе антиген связывается с поверхностью лунки полистирольного планшета. В лунку добавляют антитела, несущие фермент в качестве метки, инкубируют и отмывают. Далее приливают субстрат, который меняет окраску при взаимодействии с этим ферментом. Изменение окраски можно измерить с помощью спектрофотометрии. Таким способом проводится индикация и количественная оценка биоорганических соединений с чувствительностью до 10– 12 г/литр.

В настоящее время известно более 2000 разных ферментов, однако, только некоторые находят применение в иммуноферментном анализе. Это объясняется высокими требованиями, предъявляемыми к свойствам ферментов. Фермент должен быть высоко активен, а продукты его реакции детектироваться с высокой чувствительностью, он должен быть стабилен, так чтобы его активность сохранялась не менее одного года. Содержание фермента-маркера в определяемом образце должно быть минимальным. Именно из-за этого для разных объектов используют разные ферменты. Во многих случаях, когда необходим качественный результат, оценка иммунохимической реакции может быть проведена визуально.

Для введения ферментативной метки разработано много разных химических, биохимических и иммунологических способов.

Первым реагентом, использованным для синтеза иммуноферментных конъюгатов, был глутаровый альдегид, реагирующий с аминогруппами лизина белковых молекул. С помощью глутарового альдегида получены конъюгаты антител и антигенов с пероксидазой, щелочной фосфатазой, глюкоамилазой. В настоящее время широко используются иммунопероксидазные конъюгаты и конъюгаты с бэта-галактозидазой.

Ковалентные методы получения иммуноферментных конъюгатов нашли весьма широкое распространение, однако, к некоторых случаях действие сшивающего реагента отрицательно сказывается на ферментативной и иммунологической активности компонентов гибридной макромолекулы. В связи с этим определенный интерес представляют иммунологические методы введения ферментной метки.

Один из подходов получил название метода «гибридных антител». Ферментативным гидролизом получают Fab-фрагменты молекул антител против определяемого антигена и используемого фермента. Затем смесь продуктов гидролиза подвергают восстановлению меркаптоэтанодом; при этом Fab-фрагменты обратимо диссоциируют на симметричные части. После удаления восстанавливающего агента молекулы снова ассоциируют, образуя гибридные молекулы антител, специфичные к определяемому антигену и ферменту. При добавлении фермента образуется комплекс антитело — фермент (рис. 19,а). Гибридомная технология открывает принципиально новый путь получения гибридных антител, который заключается в том, что сливаются моноклональные клетки, специфичные

против данного антигена и фермента-маркера, в результате чего образуются гибридомы второго поколения, синтезирующие антитела, с двумя специфичностями.

Другой путь заключается в том, что получают антитела одного и того же вида животного (например, кролика) против определяемого антигена и фермента, которые соединяют между собой через антитела другого вида животных (антитела барана против кролика). Добавление фермента к такой тройной молекуле также приводит к образованию комплекса антитело — фермент. В настоящее время разрабатываются подходы получения гибридных антител методами клеточной и генной инженерии, что позволит существенно упростить способ их получения.

Стабильность иммуноферментных конъюгатов при хранении — важнейший параметр, обусловливающий возможность их практического использования. Методы направленной стабилизации конъюгатов пока еще не разработаны. Не существует также корреляции между стабильностью конъюгатов и методом их получения. Однако высокая стабильность гибридных молекул обеспечивает их применение на практике и значительно превосходит стабильность антител и антигенов, меченных радиоактивными изотопами. В лиофилизованном состоянии ферментные конъюгаты сохраняют свои свойства до двух лет.

Кроме ферментов в качестве маркеров могут быть использованы субстраты. В частности, в иммунокофакторном анализе применяются в качестве меток АТФ и НАД, которые могут быть «пришиты» к молекуле антигена через адениновый остаток таким образом, что сохраняется их способность взаимодействовать с ферментом. Аналогично были использованы субстраты пероксидазы (люминол, изолюминол), которые могут быть окислены пероксидом водорода в реакции хемилюминесценции, катализируемой пероксидазой.

Применение моноклональных антител

Наиболее широко используются моноклональные антитела в медицинской диагностике. Разработаны сумки-укладки для постановки диагнозов. Если к антителами присоединить радиоактивные или магнитоактивные материалы и ввести их в живой организм, то можно выявить в нем патологические зоны. Такие МКА присоединяются к пораженным болезнью клеткам организма, а соответствующие индикаторные материалы позволяют выяснить их местонахождение.

МКА используются и в процессах очистки веществ. Современные технологии основаны на присоединении антител к твердой матрице носителя. К ним добавляют смесь молекул, содержащую искомый антиген. Затем комплексы антиген — антитело отмываются от примесей, не связанных с матрицей. После разрушения ковалентных связей антиген — антитело в растворе остаются свободные антигены.

Если получить антитела определенного типа и иммунизировать ими животное, то образуются анти-антитела (антиидиотипные антитела). Они действуют на иммунную систему как псевдоантиген и поэтому могут быть использованы для ее стимуляции. На этом принципе основано получение вакцин нового типа. Наборы МКА могут быть также предназначены для борьбы с аллергенами.

Моноклональные антитела и "мишенная" лекарственная терапия. Предполагается, что большое разнообразие раковых заболеваний обусловлено активацией эндогенных генов, вызванной химическими агентами, внутренними хромосомными перестройками. Эти гены кодируют определенные белки, и поэтому раковые клетки могут содержать уникальные белки на поверхности клетки. Возможно, именно эти белки участвуют в супрессии роста здоровых клеток. Инактивируя эти белки, можно тормозить рост раковых клеток.

Благодаря высокий специфичности МКА широко используются в качестве зондов для точного определения природы молекул поверхности клеток и клеточных органелл. С их помощью также можно проводить детекцию активности ферментов.

Методы иммуноферментного анализа применяют в диагностике вирусных заболеваний растений. Это позволяет сократить время получения безвирусного посадочного материала, отбирать новые вирусоустойчивые сорта. При генноинженерных экспериментах можно быстро отбирать клоны — продуценты.

Поделиться:
Популярные книги

Мир-о-творец

Ланцов Михаил Алексеевич
8. Помещик
Фантастика:
альтернативная история
5.00
рейтинг книги
Мир-о-творец

Виконт. Книга 4. Колонист

Юллем Евгений
Псевдоним `Испанец`
Фантастика:
фэнтези
попаданцы
аниме
7.50
рейтинг книги
Виконт. Книга 4. Колонист

Титан империи

Артемов Александр Александрович
1. Титан Империи
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Титан империи

Запретный Мир

Каменистый Артем
1. Запретный Мир
Фантастика:
фэнтези
героическая фантастика
8.94
рейтинг книги
Запретный Мир

Ты предал нашу семью

Рей Полина
2. Предатели
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Ты предал нашу семью

Цеховик. Книга 2. Движение к цели

Ромов Дмитрий
2. Цеховик
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Цеховик. Книга 2. Движение к цели

Сила рода. Том 3

Вяч Павел
2. Претендент
Фантастика:
фэнтези
боевая фантастика
6.17
рейтинг книги
Сила рода. Том 3

Проданная невеста

Wolf Lita
Любовные романы:
любовно-фантастические романы
5.80
рейтинг книги
Проданная невеста

Волк 7: Лихие 90-е

Киров Никита
7. Волков
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Волк 7: Лихие 90-е

Падение Твердыни

Распопов Дмитрий Викторович
6. Венецианский купец
Фантастика:
попаданцы
альтернативная история
5.33
рейтинг книги
Падение Твердыни

Приручитель женщин-монстров. Том 9

Дорничев Дмитрий
9. Покемоны? Какие покемоны?
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Приручитель женщин-монстров. Том 9

Ночь со зверем

Владимирова Анна
3. Оборотни-медведи
Любовные романы:
любовно-фантастические романы
5.25
рейтинг книги
Ночь со зверем

Я – Орк. Том 6

Лисицин Евгений
6. Я — Орк
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я – Орк. Том 6

Совок-8

Агарев Вадим
8. Совок
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Совок-8