Интернет-журнал "Домашняя лаборатория", 2008 №3
Шрифт:
Импульсный прерыватель состоит из импульсного генератора (ОУ DA2), согласующего усилителя (VT1) и ключа на оптроне. Генератор вырабатывает прямоугольные импульсы, длительность и скважность которых регулируют изменением параметров времязадающей цепи R20 — R38C5. Диоды VD2 и VD3 служат для разделения цепей разрядки и зарядки конденсатора С5.
На выходе устройства сигналы управления, включающие командные реле К1 и К2, чередуются с паузами, позволяющими сделать процесс управления более плавным.
Регулятор поддерживает температуру в пределах от 0 до 40 °C с точностью, определяемой шириной зоны нечувствительности, регулируемой от 0,5 до 10 °C. При
Измерители параметров технологических режимов
На рис. 6 изображена упрощенная схема устройства, применяемого для регулирования расхода газа в газовых магистралях на предприятиях, изготавливающих полупроводниковые приборы. Авторы конструкции А. Папанченко и С. Метелев.
Регулятор выполнен на базе показывающего поплавкового расходомера газа — ротаметра РС-3 с фотоэлектрическим устройством слежения за положением поплавка в измерительной трубке. Устройство слежения представляет собой три включенных параллельно фотореле ФР1-ФР3, которые укреплены на общей каретке с осветителем HL1 и могут перемещаться вдоль измерительной трубки 2 до совмещения с поплавком 1.
При возрастании расхода газа выше установленного предела поплавок начинает подниматься в трубке и перекрывает световой поток от осветителя HL1 на фотоприемники — фотодиоды (VD1 в ФР1). При этом реле К1 и К2 обесточены. Контакты К1.1 и К2.1 замкнуты. Срабатывает реле К5 и контактами К5.1 через контакты К3.2 самоблокируется. Контактами К5.2 и К5.3 включается цепь питания электродвигателя Ml привода вентиля газовой магистрали, при этом уменьшится подача газа, и поплавок ротаметра начнет опускаться. Когда расход газа дойдет до нормы, будет перекрыт световой поток, падающий на фотоприемники VD3 и VD5. Это приведет к тому, что обмотка реле К5 обесточится, контакты реле К5.2 и К. 5.3 разомкнутся и электродвигатель выключится. При снижении расхода ниже нормы поплавок опускается ниже нормального положения. Свет начинает поступать на фотоприемник VD3, но остается закрытым поплавком фотоприемник VD5. При этом срабатывает реле К4 и своими контактами включает и реверсирует электродвигатель, который открывает вентиль и увеличивает подачу газа.
На схеме не указаны номиналы деталей, так как прибор выполнен на базе готового фотореле промышленного изготовления, а тип электромагнитных реле К4, К5 и характеристики блока питания не имеют принципиального значения. Электродвигатель постоянного тока может быть любым, он должен быть снабжен редуктором, вращающий момент на валу которого достаточен для поворачивания крана вентиля.
Конструкция интересна тем, что возможности ее применения далеко выходят за рамки регулирования расхода газа. Она может быть применена для регулирования расхода жидкости, для устройств, которые должны срабатывать в зависимости от направления перекрытия светового потока. Там же, где для решения различных задач требуются устройства с поплавковыми механизмами, эта конструкция может быть использована без какой-либо доработки.
На рис. 8 изображена принципиальная схема одного канала информационной системы контроля технологических
Устройство состоит из входного дифференциального усилителя на полевых транзисторах, согласующей ступени, выполненной по схеме эмиттерного повторителя, и выходной ступени.
Резистор R4 служит для балансирования входного усилителя. Резистором R6 устанавливают максимальную длину светящегося столба индикатора. Конденсатор С1 устраняет разрыв столба из-за импульсной помехи. Диод VD1 использован как линеаризующий элемент. Максимальная длина свечения столба обеспечивается при изменении входного напряжения устройства в пределах от 0 до 1 В.
Устройство обеспечивает требуемую точность контроля технологических параметров, позволяет создать компактное табло для оперативного и наглядного контроля производственных процессов. К достоинствам этих индикаторов можно отнести их относительно малую энергоемкость, легкость выравнивания отдельных каналов по чувствительности путем простой подборки элементов резистивных делителей напряжения и, наконец, низкую стоимость.
Авторы этой конструкции Л. Шепелевский и А. Ярыгин.
Интересный прибор для контроля качества поверхности листового стекла разработали московские радиолюбители Л. Моторов и М. Усвицкий.
В основу принципа действия прибора положено свойство передающей телевизионной трубки реагировать на малейшие изменения времени прохождения световых лучей от отражающих внешних и внутренних поверхностей наблюдаемых объектов до точки наблюдения, что выражается в появлении сложных интерференционных изображений на экране кинескопа.
На рис. 9 изображено схематически устройство этого прибора. Он состоит из подставки 9 (рис. 9,б) для укладки контролируемого листа 8 стекла. Лист освещен плоским источником света 4 с решеткой 7, выполненной в виде чередующихся непрозрачных полос с параллельными краями. Осветитель укреплен шарнирно на стойке 3. Осветитель и лист стекла располагают таким образом, чтобы свет падал на лист нормально к его поверхности.
За осветителем на треноге 5 установлена приемная телекамера 6 промышленной телевизионной установки, например ПТУ-26М. Отраженный от стекла свет воспринимает приемная камера и после преобразования в приемном устройстве 2 воспроизводится на экране телевизионного приемника 1 установки. На экране будет видно отраженное изображение чередующихся темных и светлых полос. Если поверхность стекла безупречна, то полосы будут параллельными с четкими краями. Если стекло имеет дефекты, то полосы на экране будут иметь местные искривления и размытые границы, как показано на рис. 9,б.