Чтение онлайн

на главную - закладки

Жанры

Интернет-журнал "Домашняя лаборатория", 2008 №3
Шрифт:

В практике применяют также пьезоэлектрические, магнитострикционные электрохимические, фотоэлектрические, ферромагнитные, магнитные и другие преобразователи, но они имеют меньшее распространение, чем рассмотренные выше.

Подробно о большинстве существующих преобразователей можно узнать из книг:

1. Логинов В. Н. Электрические измерения механических величин. — М.: Энергия, 1976.

2. Смирнов А. Д. Радиолюбители — народному хозяйству. — М.: Энергия, 1978.

3. Трейер В. В. Электрохимические

приборы. —М.: Советское радио, 1978.

4. Электрические измерения неэлектрических величин/Под ред. П. В. Новицкого. — Л.: Энергия, 1975.

Приложение 2

НОВАЯ ТЕХНОЛОГИЯ ИЗГОТОВЛЕНИЯ МЕДНЫХ ПРОВОЛОЧНЫХ ТЕРМОРЕЗИСТОРОВ

Из всех видов измерений неэлектрических параметров электрическими методами наибольшее распространение получили температурные измерения. Трудно найти область человеческой жизнедеятельности, где можно было бы обойтись без измерения температуры (измерение температуры различных объектов дистанционно, автоматическое регулирование температуры в сушильных шкафах, холодильниках, парниках, определение по показаниям дистанционных термометров скорости потока, расхода жидкости и т. д.).

Из всех видов температурных преобразователей наиболее доступны для изготовления в кустарных любительских условиях медные проволочные терморезисторы (или, как их называли ранее, медные проволочные электрические термометры сопротивления — МПЭТС). Большинство регуляторов и измерителей температуры имеют в основе конструкцию термодатчиков. Их широкое использование связано с широкими пределами измеряемой температуры (от — 50 до + 180 °C), линейной зависимостью сопротивления от температуры и высокой стабильностью характеристик во времени. Последнее обусловливает их взаимозаменяемость. Кроме прочего, для их изготовления не требуется дефицитных материалов.

Сопротивление RT медного терморезистора при некоторой температуре T можно найти из выражения: RT = R0(1 — аТ), где R0 — сопротивление терморезистора при нулевой температуре; а — постоянный температурный коэффициент, равный 0,00427 1/°С.

В большинстве практических случаев удобно пользоваться термодатчиками с коэффициентом преобразования, равным 1 или 10 Ом/°С. Значения сопротивления таких медных проволочных терморезисторов при нулевой температуре равны 234,2 и 2342 Ом соответственно.

Наиболее распространенная конструкция самодельного терморезистора изображена на рис. 43. Терморезистор состоит из каркаса 2 с щеками, на котором намотано 1480 витков медного изолированного провода диаметром 0,05 мм. Обмотка бифилярная, ее концы припаяны к выводам 5 из монтажного провода, один из которых пропущен сквозь отверстие в каркасе. Выводы обвязаны бандажом из капроновой нити. Обмотка 3 защищена капроновой лентой 4. Вся конструкция покрыта оболочкой 1 из эпоксидной смолы.

Недостаток этой конструкции —

большая трудоемкость изготовления и значительный разброс по сопротивлению. Последнее обстоятельство требует индивидуальной подгонки терморезисторов по номиналу в термостате при нулевой температуре. Изготовление таких термометров было доступно только высококвалифицированному персоналу. В целом же готовый терморезистор удобен в эксплуатации и надежен в работе в трудных климатических условиях.

Автором книги была разработана упрощенная технология изготовления терморезисторов. Основное ее отличие от старой — использование бескаркасной намотки увеличенного (до 30 мм) диаметра. Это дало возможность уменьшить число витков, ускорить намотку, резко уменьшить разброс сопротивления и исключить индивидуальную подгонку резисторов в термостате. Для их изготовления по новой технологии был разработан ручной намоточный станок. Он состоит из плиты-основания, на которой установлены четыре стоики для крепления двух катушек с проводом. Каждая катушка фиксирована на втулках, закрепленных на оси таким образом, чтобы обеспечить отсутствие радиального биения катушки. Самопроизвольному раскручиванию катушек в ходе намотки препятствуют фетровые шайбы, вложенные по бокам катушек. Оси закреплены в шарикоподшипниках. Провод с обеих катушек пропущен через направляющую шайбу из фторопласта, подвешенную на пружинах. Затем оба провода проходят через устройство, обеспечивающее регулируемое натяжение и представляющее собой две планки из фторопласта, сжатые пружиной. Усилие пружины регулируют гайкой. Далее провода пропущены между двумя направляющими роликами и поступают на оправку. Поверхность конусной оправки тщательно отшлифована. Она имеет небольшую конусность (10–15°) для обеспечения снятия готовой обмотки. На конце вала оправки установлена рукоятка, а другой конец соединен с счетчиком числа витков.

Все узлы станка должны быть выполнены очень тщательно, не должно быть никаких заеданий. Необходимо помнить, что намоточный провод тонок и малейший рывок приведет к его обрыву. Оправка изготовлена из углеродистой стали, закалена и отшлифована. Станок позволяет сматывать провод диаметром 0,05 мм с катушек массой до 1,5 кг. Масса катушек с проводом диаметром 0,02 мм не должна превышать 100 г.

Намотку ведут в два провода одновременно с обеих катушек. Обмотка состоит из 142 витков провода диаметром 0,05 мм «ли 28 витков провода диаметром 0,02 мм.

Снятую с оправки станка обмотку складывают пополам (см. рис. 44), перегибают, скручивают, зачищают и спаивают оба проводника с одного из концов. К выводам получившегося компактного «кокона» припаивают тонкие гибкие выводы, вкладывают бумажную бирку с номером и плотно обматывают капроновой нитью. Изготовленный терморезистор необходимо герметизировать эпоксидной смолой.

Для герметизации терморезисторов удобно использовать устройство, схематично изображенное на рис. 45.

Оно состоит из деревянной подставки 1 (рис. 45,а) с вставленными в нее шпильками 4 для фиксации выводов терморезисторов и десятиместной заливочной формы. Форма представляет собой матрицу 3, сложенную из двух фторопластовых планок и двух накладок 2 из латуни. Весь пакет сжат в единое целое двумя винтами. В планках 3 просверлены отверстия — заливочные камеры (рис. 45,б). Стенки заливочных камер должны быть как можно более ровными и гладкими.

Поделиться:
Популярные книги

Белые погоны

Лисина Александра
3. Гибрид
Фантастика:
фэнтези
попаданцы
технофэнтези
аниме
5.00
рейтинг книги
Белые погоны

На границе империй. Том 7

INDIGO
7. Фортуна дама переменчивая
Фантастика:
боевая фантастика
космическая фантастика
попаданцы
6.75
рейтинг книги
На границе империй. Том 7

Возмездие

Злобин Михаил
4. О чем молчат могилы
Фантастика:
фэнтези
7.47
рейтинг книги
Возмездие

Скандальный развод, или Хозяйка владений "Драконье сердце"

Милославская Анастасия
Фантастика:
попаданцы
фэнтези
5.00
рейтинг книги
Скандальный развод, или Хозяйка владений Драконье сердце

Мужчина не моей мечты

Ардова Алиса
1. Мужчина не моей мечты
Любовные романы:
любовно-фантастические романы
8.30
рейтинг книги
Мужчина не моей мечты

Золушка по имени Грейс

Ром Полина
Фантастика:
фэнтези
8.63
рейтинг книги
Золушка по имени Грейс

Невеста

Вудворт Франциска
Любовные романы:
любовно-фантастические романы
эро литература
8.54
рейтинг книги
Невеста

Его огонь горит для меня. Том 2

Муратова Ульяна
2. Мир Карастели
Фантастика:
юмористическая фантастика
5.40
рейтинг книги
Его огонь горит для меня. Том 2

Корсар

Русич Антон
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
6.29
рейтинг книги
Корсар

Имя нам Легион. Том 9

Дорничев Дмитрий
9. Меж двух миров
Фантастика:
боевая фантастика
рпг
аниме
5.00
рейтинг книги
Имя нам Легион. Том 9

Дыхание Ивента

Мантикор Артемис
7. Покоривший СТЕНУ
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Дыхание Ивента

Мне нужна жена

Юнина Наталья
Любовные романы:
современные любовные романы
6.88
рейтинг книги
Мне нужна жена

Имя нам Легион. Том 7

Дорничев Дмитрий
7. Меж двух миров
Фантастика:
боевая фантастика
рпг
аниме
5.00
рейтинг книги
Имя нам Легион. Том 7

Убивать, чтобы жить

Бор Жорж
1. УЧЖ
Фантастика:
героическая фантастика
боевая фантастика
рпг
5.00
рейтинг книги
Убивать, чтобы жить