Интернет-журнал "Домашняя лаборатория", 2008 №4
Шрифт:
То есть в состав генома бактерий могут входить как кольцевые, так и линейные молекулы ДНК. И геном может состоять из одной или из нескольких молекул ДНК, называемых хромосомами или плазмидами. Если гены, которые содержаться на дополнительной молекуле, необходимы клетке, то эта молекула называется минихромосомой, а если без них клетка может обойтись — то плазмидой.
Размеры молекул ДНК указывают в парах оснований, п.н. или bp (base pairs)
Для больших фрагментов используют т. п.н. или kb (kilo base)=103 bp и Mb (mega base)= 106 bp
Геномы бактерий — от 0.58 Mb у Micoplasma genitalium до 9.5 Mb у Myxococcus xanthus.
Как
С ДНК, которая попала во вторую клетку происходит следующее. Хозяйская хромосома содержит такие же гены, как и тот кусок ДНК, который был перенесен в клетку. Однако варианты генов в исходной, донорной клетке, и в клетке-реципиенте могут отличаться. Например, в исходной клетке ген кодировал синтез фермента лактазы (расщепляет молочный сахар лактозу), а в рецепиенте такой же ген испорчен, то есть лактазу не кодирует из-за какой-то мутации. При этом бактерия не способна использовать сахар лактозу в среде.
Вновь прибывшая ДНК и хозяйская ДНК обмениваются гомологичными (то есть содержащими одинаковые гены) кусками. Образуется новое сочетание генов в хозяйской клетки. Среди ее старых генов оказывается встроен кусок с новым геном, прибывшим из клетки-донора. Этот процесс обмена кусками ДНК называется рекомбинацией. Та ДНК, которая в процессе рекомбинации оказалась не включенной в хромосому, деградирует и исчезает. Новый ген проявляет себя, клетка оказывается способной расщеплять тот сахар, который раньше использовать не могла. Это все детектируется исследователем. В такой ситуации ген лактазы называют генетическим «маркером», он маркирует участок хромосомы, связанный с определенным свойством бактерии (способностью расщеплять сахар, которую может детектировать исследователь).
Процесс репликации у кишечной палочки продолжается 20 минут, а процесс конъюгации длится 3–5 минут. За это время успевает перейти не вся хромосома, а только ее кусочек. Чем дольше длится конъюгация, тем больший кусочек успевает перейти из одной клетки в другую. Этот процесс позволяет определит какие маркеры поступили в клетку, если исходно клетки различались по нескольким генам. F-фактор способен встраиваться в разные участки хромосомы, и когда начинается передача, разные маркеры попадают в другую клетку. Проводили эксперимент. После конъюгации клетки встряхивали, и мостики между ними разрывались. Это встряхивание проводили через 2, 3, 5 минут, и смотрели, какие маркеры (и, соответственно, какой фрагмент хромосомы) за это время войдут. По этим данным строили генетическую карту (расположение друг относительно друга генетических маркеров). Генетическая карта кишечной палочки была построена в 60-х годах. На этой карте были гены-маркеры, расположенные по всей кольцевой хромосоме, а координаты генов на карте обозначались в минутах. Итоговая карта, построенная в 60-х годах, имела координаты в промежутке от 0 до 90 минут. Поэтому один известный микробиолог шутил, что кишечная палочка — это
Построение такой карты было большим достижением, так как для кишечной палочки она была построена впервые; для других организмов существуют другие методы построения генетических карт, но все они основаны на рекомбинации. В начале 20-ого века были построены рекомбинационные карты для изучения генома мухи, а затем подобные карты стали использоваться для изучения генома человека.
Появились более точные технологии изучения генома бактерий, пределом точности является определение нуклеотидной последовательности, точнее карту построить невозможно. На этой карте расстояние обозначается уже не в минутах, а в парах нуклеотидов.
Метод определения последовательности нуклеотидов, или секвенирование, был разработан в 70-х годах. Две группы ученых независимо друг от друга разрабатывали эти методы. Один из них был разработан Сэнгером, второй — Максамом и Гилбертом, и все они получили в 1980 году Нобелевскую премию. До сих пор созданные ими принципы используются при секвенировании, сейчас уже проводимом не вручную, а автоматами.
В 1995 году был прочтен первый относительно небольшой геном бактерии Haemophilus influenzae. Это было огромным достижением, очень большой сенсацией. До этого удавалось определить полностью только геномы вирусов, которые на порядок меньше геномов бактерий. На настоящий момент полностью прочитаны геномы более 100 видов бактерий.
ЧТО УДАЕТСЯ УЗНАТЬ О БАКТЕРИЯХ ПО ИХ ГЕНОМУ
Состав генома (какие гены присутствуют)
Раньше, чтобы узнать что-то о бактерии, надо было долгие годы исследовать ее способность расщеплять те или иные сахара, другие питательные вещества, установить, какая температура оптимальная для ее роста, получить множество мутантов, для того, чтобы построить генетическую карту генома бактерии. Но сейчас можно очень многое узнать о неизвестной бактерии, если прочесть ее геном. По тому, какие гены входят в состав генома, можно определить, какой образ жизни ведет бактерия. Это важно для возбудителей различных заболеваний — по составу их генов можно установить, к каким веществам они чувствительны, и точно подобрать лекарство или создать новый эффективный препарат для лечения.
К примеру, размер генома паразитической бактерии микоплазмы (Mycoplasma genitalium) — 580000 пар нуклеотидов. 90 % ее генома кодирует белки, 10 % содержат регуляторные последовательности белков, т. е. белки не кодирует. У нее 4 68 генов (это можно с точностью определить по нуклеотидной последовательности генома).
Что означают различия в количестве кластеров рибосомной РНК? Кишечная палочка делится раз в двадцать минут, туберкулезная микобактерия делится раз в сутки. Кстати, это представляет трудности в диагностики туберкулеза (для того, чтобы выделить из мокроты больного эту бактерию, необходимо ее выращивать неделями, чтобы там что-то можно было проанализировать). Из-за того, что она так медленно растет, ей не нужно активно синтезировать рибосомы, поэтому у нее меньше генов, нужных для синтеза рибосом (в 10 раз меньше, чем у свободно живущей и активно растущей Bacillius subtilis).
Процент кодирующих последовательностей самый высокий у микоплазмы Mycoplasma genitalium. Она живет в постоянных условиях внутри клетки, ей мало что нужно регулировать. У других бактерий большую долю занимают кодирующие белки, а у человека, по сравнению с бактериями, кодирующие белки занимают намного меньшую часть генома (2 %). В принципе, это соответствует развитию общества: все меньшую часть занимает производство, и все большую часть занимает сервис и информационные технологии.
Ориентация генов (направление транскрипции)