Интуиция
Шрифт:
• В июле 2000 г. Дэвид Ховард из Брукингса, штат Южная Дакота, средний игрок в гольф (9 лунок за 45 ударов), обычно завершавший игру со счетом не более 210, выполнил свой первый хоул-ин-уан удар [15] и через несколько часов завершил игру со счетом 300.
• В августе 2001 г. Скотт Хаттеберг из футбольного клуба «Boston Red Sox» сорвал редкую тройную комбинацию, зато потом исправился, совершив великолепный бросок.
• Рон Вахон сидел среди тысяч других болельщиков на матче по бейсболу в Бостоне в сентября 1990 г., когда игрок «Oakland» А Рики Хендерсон дважды попал в него мячом во время двух последовательных бросков. (Болельщик отбил их.)
15
Хоул-ин-уан (hole-in-one) — очень редко встречающийся
То, что в Рона Вахона дважды, во время двух передач, попали мячом, выглядит совершенно невероятным. Тем не менее нечто похожее случается в каждом виде спорта. Событие, которое должно происходить с одним человеком на миллиард в день, с кем-нибудь происходит 2000 раз в год. Мы можем понять это, не изобретая никаких ненужных объяснений. Проблема возникает благодаря причудливым паттернам, которые искушают нас увидеть порядок и некий феномен там, где их нет.
Природа не терпит пустоты, человеческая природа не терпит хаоса. Продемонстрируйте случайность, и мы обнаружим порядок, паттерн, кластеры и периоды.
«Тенденция приписывать порядок допускающим двоякое толкование стимулам встроена в когнитивные механизмы, которые мы используем для того, чтобы постичь мир», — пишет Томас Гилович в своей книге «Как мы узнаем, что не так» («How We Know What Isn't So»). Это лицевая сторона нашей тяги к порядку — нашего умения выявлять реально существующие паттерны, устанавливать связи и выдвигать научные теории. Но существует и изнанка. Она проявляется в наших иллюзорных обоснованиях, суевериях и недальновидности. Последнее удивительно справедливо в случае спортивных болельщиков, тренеров, игроков и комментаторов. Мы знаем о том, что баскетболисты иногда проходят в «зону» и что каждый бейсболист становится жертвой ударов и получает удовольствие от пробежек. Мы знаем, как передать мяч игроку своей команды и совершить подачу, обведя мяч вокруг соперника резким ударом. А теперь удивляйтесь! Мы можем ложно истолковать пробежки игрока. Чтобы понять почему, давайте поговорим о случайности.
Случайные последовательности зачастую оказываются ненадежными
Ключ к тому, чтобы сделать спортивную интуицию более прозорливой, заключается в том, чтобы понять один простой факт из жизни: случайные последовательности редко выглядят случайными, поскольку они содержат больше скоплений одинаковых элементов, чем ожидают люди. Много-много лет назад люди просчитали закономерности выпадения осадков, расположения водоносных скважин и циклов урожая. Мы — потомки этих умелых искателей закономерностей. Верные своему наследию, мы ищем порядок, осмысленные паттерны — даже в случайных данных.
Давайте рассмотрим пример с подбрасыванием монеты. Если человек подкинет монетку 6 раз, какая из следующих последовательностей орлов (О) и решек (P) кажется вам более вероятной: OOOPPP, OPPOPO или ОООООО?
Дэнизл Канеман и Эмос Тверски отмечают, что большинство опрошенных считают самой вероятной комбинацией ОРРОРО. (Попросиге кого-нибудь предсказать результат шести подбрасываний монеты, и он предложит вам последовательность вроде этой.) На самом деле все эти комбинации равно вероятны (или невероятны). Чтобы продемонстрировать это явление самому себе (вы тоже можете сделать это), я подбрасывал монету 51 раз, получив такие результаты:
ОРРРОООРРРРООРРОРРООРРОРРРОРО РРРРРРОРРОР ООООРООРРРР
Глядя на эту последовательность, мы видим следующие паттерны: результаты бросков с 10 по 22, выделенные подчеркиванием, демонстрируют чередование двух орлов и двух решек. Во время бросков 30-38 у меня была «холодная рука» (мне не везло), и в 9 бросках я выкинул того одного орла. Но потом фортуна повернулась ко мне лицом — 6 орлов из 7 бросков.
Почему именно эти паттерны? Осуществлял ли я паранормальный контроль над монетой во время броска? Избавился ли я, наконец, от решек и начал выбрасывать орлов? Здесь не нужно никаких дополнительных объяснений: чередование паттернов можно найти в любой случайной последовательности.При сравнении итога каждого броска с результатом последующего в 24 из 50 сравнений мы получаем изменение результата — именно такой процент (50%) чередований мы и ожидаем при подбрасывании монетки. Несмотря на паттерны, выявляющиеся в этих данных, результат броска не дает никаких указаний на результат следующего броска.
«Шифр Библии», по которому сходили с ума в конце 1990-х гг., является примером того, что автор книги «Селестинские пророчества» («Celestine Prophecy») Джеймс Редфилд назвал «кажущимся совпадением случайностей» — странными происшествиями, воспринимаемыми так, как будто в них есть некий смысл». Если превратить текст Библии на иврите в длинную последовательность букв без интервала, компьютер может выискать в ней определенные слова, образованные каждой -надцатой буквой и идущие вертикально, горизонтально или диагонально. Например, буквы, дающие имя убитого премьер-министра Израиля Ицхака Рабина, были найдены рядом со словом «заказное убийство». Однако задним числом каждый может найти любого рода слова (не уточняя их заранее), «зашифрованные» в любой книге. Один из болельщиков баскетбольной лиги «NBA», вскоре после того как «Chicago Bulls» выиграли чемпионский титул в 1998 г., воспользовался техникой «последовательности равноудаленных букв» и нашел слово «Chicago» в романе Толстого «Война и мир». Должны ли мы говорить о том, что «Tolstoy code» предсказал победу «Bulls»? При условии достаточно случайных последовательностей букв, выискиваемых в любом напраалении, некоторые слова — некоторые паттерны — обязательно появятся.
Подумайте: какие из приведенных ниже паттернов на сетке размером 10 клеток на 10 дают самое случайное распределение 50 белых и 50 черных клеток?
В случайном паттерне цвет любой клетки не даст нам никаких указаний относительно цвета следующей клетки. Это лотерея. Это справедливо для паттерна, изображенного слева. Как сообщают Рума Фальк и Клиффорд Коннолд, паттерн справа будет казаться большинству людей более случайным. Однако это не так, поскольку в нем слишком высокий (63%) показатель смены цвета при движении в вертикальном или горизонтальном направлении. Чем сложнее и труднее для запоминания паттерн, тем более случайным он кажется людям. Пытаясь генерировать случайные последовательности, люди предлагают слишком много чередований и слишком мало палое и кластеров, которые мы видим на левом рисунке.
Один из моих друзей-математиков однажды попытался создать кирпичную стенку у себя дома, пользуясь таблицей случайных чисел для расположения красных, белых и черных кирпичей. Увы, ему пришлось отказаться от таблицы, потому что он обнаружил, что в таком случае большой кусок стены состоял бы только из черных кирпичей. Случайное расположение не выглядело случайным.
Лондонцы столкнулись с этой тенденцией видеть кластеры в случайных паттернах — и думать, что на самом деле эти кластеры не случайны, — во время Второй мировой войны. Например, видя, что на некоторые районы города падает непропорционально много немецких бомб, люди начинали строить теории, что на долю кварталов Ист-Энда, населенных рабочими, приходится больше бомб, потому что немцы пытаются поссорить богатых и бедных. После войны статистический анализ показал, что бомбы падали совершенно случайно. Немецкие самолеты-снаряды V-1 и управляемые ракеты V-2 могли найти Лондон, но не обладали столь высокой точностью попаданий, чтобы поражать определенные районы города.
Совсем недавно американцы предположили существование закономерностей в нападениях акул и наличие кварталов города с высокими показателями рака и лейкемии. Вот только один пример из тысячи кластеров, о которых сообщает Министерство здравоохранения — городок Макфарланд, штат Калифорния, с населением 6400 человек. Женщина, ребенок которой заболел раком, обнаружила еще 4 случая рака в близлежащих домах, а затем в этом же районе врачи выявили еще 6 случаев заболевания. В результате было возбуждено судебное дело против производителей пестицидов — их обвинили в загрязнении колодцев отходами производства, что стало причиной развития рака. Да, окружающая среда может быть токсичной, о чем, например, говорит распространение антракоза среди шахтеров. Но, к разочарованию жителей «пораженных» кварталов, никакими факторами окружающей среды не удалось объяснить наличие кластера заболеваемости раком. Главный инспектор по исследованию состояния окружающей среды штата Калифорния пришел к выводу о том, что, принимая во внимание десятки тысяч зарегистрированных случаев заболевания раком, полученные результаты связаны со случайным подъемом заболеваемости. Он отметил, что это «почти определенно ничего не означает».